Passer au contenu de cette vue
Accueil
Actualités
Tous les cours
Etablissements
Inscription
Connexion
A propos
Inria
Bioinformatics: Genomes and Algorithms
Rechercher un cours
Inscription
Connexion
En cliquant sur « J'accepte », vous activez un cookie uniquement destiné à la mesure d’audience.
> En savoir plus
J'accepte
Infos du cours
Glossary
Table Of Contents
, current location
Table of contents
Introduction
Course Presentation
Guide: Learning Platform
Documentation
Week 1: Genomic texts
1.1. The cell, atom of the living world
1.2. At the heart of the cell: the DNA macromolecule
1.3. DNA codes for genetic information
1.4. What is an algorithm?
+ Python
1.5. Counting nucleotides
+ Python
1.6. GC and AT contents of DNA sequence
1.7. DNA walk
+ Python
1.8. Compressing the DNA walk
1.9. Predicting the origin of DNA replication?
+ Python
1.10. Overlapping sliding window
+ Python
Exercises Week 1
+ Python
Course Documents
Week 2: Genes and proteins
2.1. The sequence as a model of DNA
2.2. Genes: from Mendel to molecular biology
+ Python
2.3. The genetic code
2.4. A translation algorithm
2.5. Implementing the genetic code
2.6. Algorithms + data structures = programs
2.7. The algorithm design trade-off
2.8. DNA sequencing
+ Python
2.9. Whole genome sequencing
2.10. How to find genes?
Exercises Week 2
Course Documents
Week 3: Gene prediction
3.1. All genes end on a stop codon
3.2. A simple algorithm for gene prediction
+ Python
3.3. Searching for start and stop codons
+ Python
3.4. Predicting all the genes in a sequence
+ Python
3.5. Making the predictions more reliable
+ Python
3.6. Boyer-Moore algorithm
3.7. Index and suffix trees
3.8. Probabilistic methods
3.9. Benchmarking the prediction methods
3.10. Gene prediction in eukaryotic genomes
Exercises Week 3
+ Python
Course Documents
Week 4: Sequence comparison
4.1. How to predict gene/protein functions?
4.2. Why gene/protein sequences may be similar?
4.3. Measuring sequence similarity
+ Python
4.4. Aligning sequences is an optimization problem
4.5. A sequence alignment as a path
4.6. A path is optimal if all its sub-paths are optimal
4.7. Alignment costs
4.8. A recursive algorithm
+ Python
4.9. Recursion can be avoided: an iterative version
+ Python
4.10. How efficient is this algorithm?
Exercises Week 4
Course Documents
Week 5: Phylogenetic trees
5.1. The tree of life
5.2. The tree, an abstract object
5.3. Building an array of distances
+ Python
5.4. The UPGMA algorithm
+ Python
5.5. Differences are not always what they look like
5.6. The diversity of bioinformatics algorithms
5.7. The application domains in microbiology
Exercises Week 5
Course Documents