GENOMES AND ALGORITHMS

Computer analysis of genetic information

François Rechenmann

GENOMES AND ALGORITHMS

- 1. Genomic texts
- 2. Genes and proteins
- **3.**Gene prediction
- 4. Sequence comparison
- 5. Phylogenic tree construction

François Rechenmann

3. Gene prediction

- All genes end on a stop codon
- A simple algorithm for gene prediction
- Searching for start and stop codons
- Predicting all the genes in a sequence
- Making the predictions more reliable
- Boyer-Moore algorithm
- Index and suffix trees
- Probabilistic methods
- Benchmarking the prediction methods
- Gene prediction in eukaryotic genomes

All genes end on a stop codon

Necessary conditions

- A gene can only be found between two <u>consecutive</u> stop triplets in the same phase
- A minimal distance is required in order to be translated into an protein
 - Typically 300 nucleotides (100 AA)

Open Reading Frame (ORF)

- On every phase, on the two strands (i.e. 6 different sequences)
 - 1. Look for stop triplets
 - 2. If distance between 2 consecutive stop triplets > 300, then record the ORF
 - 3. In the ORF, look for the "left"-most start codon, so that the coding region length is maximal

