2. Genes and proteins

- The sequence as a model of DNA
- Genes: from Mendel to molecular biology
- The genetic code
- A translation algorithm
- Implementing the genetic code
- Algorithms + data structures = programs
- The algorithm design trade-off
- DNA sequencing
- Whole genome sequencing
- How to find genes?

François

Rechenmann

BIOINFORMATICS: GENOMES AND ALGORITHMS

The genetic code

Proteins

- Genes are DNA regions coding for proteins
- Proteins are made up of amino acids (AA)
- 20 different amino acids in protein sequences
- one-letter, 3-letter and full names

Alanine	Ala	Α
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	н
Isoleucine	lle	I
Leucine	Leu	L
Lysine	Lys	к
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	Р
Serine	Ser	S
Threonine	Thr	Т
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

Translation

- Gene RNA sequences are translated into AA sequences
- What is the code?

i.e. the correspondance between DNA/RNA sequences (4-letter alphabet) and AA sequences (20-letter alphabet)

- 1 nucleotide / letter → only 4 possible AAs
- 2 nucleotides / letters → only 16 possible AAs AA AC AG AT CA CG CC CT GA GC GG GT TA TC TG TT
- 3 nucleotides / letters \rightarrow 64 (4 × 4 × 4) possible AAs

The genetic code as a 3-entry table

1st		2nd base :							3rd	
base		U	U C		A		G			
	υυυ	UUU (Phe/F) Phenylalanine	UCU	(Cor/C) Corino	UAU	(Tyr/Y) Tyrosine	UGU	J (Over(C) Overteine		
	UUC		UCC		UAC		UGC	(Cys/C) Cystellie	С	
Ů	UUA		UCA	UCA	(Selis) Sellie	UAA	Stop (Ochre)	UGA	Stop (Opal)	A
	UUG		UCG		UAG	Stop (Amber)	UGG	(Trp/W) Tryptophan	G	
	CUU		CCU		CAU	(His/H) Histidine (Gln/Q) Glutamine	CGU		U	
•	CUC		CCC	(Bro/P) Brolino	CAC		CGC	(Arg/P) Argining	С	
č	CUA		CCA		CAA		CGA		A	
	CUG		CCG		CAG		CGG		G	
	AUU		ACU		AAU	(Asn/N) Asparagine	AGU	(Ser/S) Serine	U	
	AUC	(Ile/I) Isoleucine	ACC	(Thr/T) Throoping	AAC		AGC		C	
~	AUA		ACA	ACA AAA	(Luc/K) Lucino	AGA	(Arc/P) Arcipipo	A		
	AUG ^[A]	(Met/M) Methionine	ACG	G	AAG	(Lyork) Lysine	AGG	(Alg/A) Alginine	G	
	GUU		GCU		GAU	(Asp/D) Aspartic acid	GGU	Gly/G) Glycine	U	
~	GUC	(Val/V) Valine	GCC	(Ala/A) Alanine	GAC		GGC		С	
G	GUA		GCA		GAA		GGA		A	
	GUG	GCG		GAG	(Giu/E) Giutamic acio	GGG	3			

[A]: start codon

The genetic code is redundant

- It is said to be "redundant"
 - Several different triplets code for the same amino acid
 - Example: CCU, CCC, CCA and CCG code all for proline / P
 - Coding triplets of nucleotides are called codons
- The triplet ATG (or AUG) codes for methionine but <u>may</u> also be the triplet where translation begins (start codon)
- UAA, UAG and UGA are stop triplets where translation ends

The genetic code as an array

• The genetic code can be represented as an array of 64 rows and 2 columns

• Here, the first 12 rows (over 64)

ТТТ	F
TTC	F
TTA	L
TTG	L
TCT	S
TCC	S
TCA	S
TCG	S
TAT	Y
TAC	Y
TAA	Stop
TAG	Stop

Pictures & movies : material licensing

p. 4 : Public domain, <u>http://www.ebi.ac.uk/</u>