While using nested CV, for hyperparameter tuning we are giving 2 values for classifier__learning_rate
and classifier__max_leaf_nodes
, so ideally there should be 4 grid points/different models, but cv_results
returns only 3, may I know why is that?
from sklearn.model_selection import cross_validate
from sklearn.model_selection import GridSearchCV
param_grid = {
'classifier__learning_rate': (0.05, 0.1),
'classifier__max_leaf_nodes': (30, 40)}
model_grid_search = GridSearchCV(model, param_grid=param_grid,
n_jobs=4, cv=2)
cv_results = cross_validate(
model_grid_search, data, target, cv=3, return_estimator=True)