
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 2 - Sequence 3: Constructing and Observing Arrays

Unbounded composite values

I A limitation of tuples and records: their sizes are statically bounded.
I Arrays allow to define composite values whose size is dynamically defined.
I For type-checking to remain simple, all array elements must have the same type.

2

One array I

let p = [| 1; 2; 3 |];;
val p : int array = [|1; 2; 3|]

3

A function producing arrays of multiple size I

let square x = x * x;;
val square : int -> int = <fun>
let squares n = Array.init n square;;
val squares : int -> int array = <fun>
let s1 = squares 5;;
val s1 : int array = [|0; 1; 4; 9; 16|]

4

Syntax for array type

I The type of an array whose elements have some_type is
some_type array

I array is a predefined type constructor.
I The standard library module Array provides functions over arrays.

5

Syntax for array construction

I Arrays whose elements and sizes are known at compile-time are written:
[| some_expression; ...; some_expression |]

I The function Array.make expects an integer representing the size of the array
and a value to initialize each component of the array.

I The function Array.init expects an integer representing the size of the array
and a function to initialize each component of the array.

I The initialization function is given the index
of the component and must return its value.

I Array.length returns the size of an array.

6

Syntax to observe array cells

I To observe a specific component of an array using an index:
some_expression.(some_expression)

I Indexes of array a are taken between 0 and Array.length a - 1.
I To observe several components of an array, one can use array patterns:

[| some_pattern; ...; some_pattern |]

7

Accessing array cells I

let swap a = [| a.(1); a.(0) |];;
val swap : ’a array -> ’a array = <fun>
let b = swap [| 0; 1 |];;
val b : int array = [|1; 0|]
let c = swap [| 0; 1; 2 |];;
val c : int array = [|1; 0|]

8

Pattern matching over arrays I

let swap [| x; y |] = [| y; x |];;
Characters 9-32:

let swap [| x; y |] = [| y; x |];;
^^^^^^^^^^^^^^^^^^^^^^^

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[| |]
val swap : ’a array -> ’a array = <fun>
let t = swap [| 2; 1 |];;
val t : int array = [|1; 2|]
let t = swap [| 2; 1; 0 |];;
Exception: Match_failure ("//toplevel//", 1, 9).

9

In the machine

Program Machine

let p = [| 1; 2; 3 |]
1 2 3

let q = [| p; p |]

I In memory, an array is a heap-allocated block.

10

Pitfalls: Heterogeneous element types

I All the elements of an array must have the same type.

11

Type clash between array components I

let a = [| true; 1 |];;
Characters 17-18:

let a = [| true; 1 |];;
^

Error: This expression has type int but an expression was expected
of type

bool

12

Pitfalls: Out of bound

I The compiler cannot ensure that all observation is valid.
I A negative index or an index greater than Array.length a - 1 is an invalid

observation of the array a.

13

There is nothing outside I

let a = [| 0; 1; 2 |];;
val a : int array = [|0; 1; 2|]
let x = a.(3);;
Exception: Invalid_argument "index␣out␣of␣bounds".
let y = a.(-1);;
Exception: Invalid_argument "index␣out␣of␣bounds".

14

