
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 2 - Sequence 1: Constructing and Observing Tuples

Composite values

I Some values are naturally made of several components.
I Example:

I A citizen identification = a name, a firstname, and a social security number.
I A 2D coordinate = an abscissa, an ordinate.

I How can we construct and observe composite values?

2

2D coordinates I

let origin = (0, 0);;
val origin : int * int = (0, 0)
let x_positive_limit = (max_int, 0);;
val x_positive_limit : int * int = (4611686018427387903, 0)
let x_negative_limit = (min_int, 0);;
val x_negative_limit : int * int =

(-4611686018427387904, 0)

3

2D coordinates documented with types I

type point2D = int * int;;
type point2D = int * int
let origin : point2D = (0, 0);;
val origin : point2D = (0, 0)
let x_positive_limit : point2D = (max_int, 0);;
val x_positive_limit : point2D = (4611686018427387903, 0)
let x_negative_limit : point2D = (min_int, 0);;
val x_negative_limit : point2D = (-4611686018427387904, 0)

4

Syntax for tuple construction

I The type constructor “*” constructs tuple types:
some_type * ... * some_type

I A tuple is constructed by separating its components with a comma “,”:
(some_expression, ..., some_expression)

I How to observe the components of a tuple?

5

Pattern matching

I Patterns describe how values are observed by the program.
I Patterns appear in let-bindings and as function arguments.
I We already saw the simplest form of pattern: identifiers.

let x = 6 * 3 in x

. . . can be read as “I observe the value of 6 * 3 by naming it x”.
I Another simple way to observe a value is to ignore it using a wildcard pattern:

let _ = 6 * 3 in 1

. . . can be read as “I ignore the value of 6 * 3.”

6

Pattern matching tuples

I Patterns can be composed to describe the observation of tuples:
let (x, _) = (6 * 3, 2) in x

. . . can be read as:
I “I observe the first component of (6 * 3, 2) by naming it x”
I and “I ignore the second component of (6 * 3, 2)”.

7

Extract the two components of a pair I

let a = (3 * 6, 4 * 6);;
val a : int * int = (18, 24)
let (x, _) = a;;
val x : int = 18
let abscissa (x, _) = x;;
val abscissa : ’a * ’b -> ’a = <fun>
let ordinate (_, y) = y;;
val ordinate : ’a * ’b -> ’b = <fun>

8

Syntax for tuple patterns

I A pattern that matches a tuple has the form:
(some_pattern, ..., some_pattern)

I The number of subpatterns must be equal to the number of tuple components.
I An identifier can only occur once in a pattern.

9

In the machine

Program Machine

let p = (1, 2, 3) 1 2 3

let q = (p, 0) 0

Program Machine

let p = (1, 2, 3) 1 2 3

let q = (p, p)

I A tuple is represented by a heap-allocated block.
I The program holds a pointer to this block.
I This pointer can be shared.

10

Structural equality VS physical equality

I In OCaml, the operator = implements structural equality.
I Two values are structurally equal if they have the same content.
I The operator == implements physical equality.
I Two values are physically equal if they are stored in the same memory location.

11

Structural equality VS physical equality I

let x = (1, 2);;
val x : int * int = (1, 2)
let y = (1, 2);;
val y : int * int = (1, 2)
let z = x;;
val z : int * int = (1, 2)
let x_is_structural_equal_to_y = (x = y);;
val x_is_structural_equal_to_y : bool = true
let x_is_not_physically_equal_to_y = (x == y);;
val x_is_not_physically_equal_to_y : bool = false
let x_is_physically_equal_to_z = (x == z);;
val x_is_physically_equal_to_z : bool = true

12

Pitfalls: Ill-formed patterns

I Invalid arity.
I Nonlinear patterns.
I These errors are caught by the compiler!

13

Ill-formed patterns I

let (x, _) = (1, 2, 3);;
Characters 13-22:

let (x, _) = (1, 2, 3);;
^^^^^^^^^

Error: This expression has type ’a * ’b * ’c
but an expression was expected of type ’d * ’e

let (x, x, y) = (1, 2, 3);;
Characters 8-9:

let (x, x, y) = (1, 2, 3);;
^

Error: Variable x is bound several times in this matching

14

Pitfalls: Semantically invalid projection

I Definition-by-position is error-prone.

15

A semantically invalid projection I

let abscissa (x, y) = y;;
val abscissa : ’a * ’b -> ’b = <fun>
let ordinate (x, y) = x;;
val ordinate : ’a * ’b -> ’a = <fun>

16

Pitfalls: Semantically invalid projection

What’s next?
Records will help us avoid such errors.

17

