
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 1 - Sequence 3: Definitions

Global Definitions

I give names to values
I global: effective for the rest of the toplevel session
I syntax: let name = expression
I there is no separate declaration of identifiers
I once set, the value of an identifier never changes
I once defined, an identifier can be used in expressions

2

Global Definition Examples I
let x = 2+3;;
val x : int = 5

let y = 2*x;;
val y : int = 10

let x = 42;;
val x : int = 42

y;;
- : int = 10

x;;
- : int = 42

3

Local Definitions

I Naming with a delimited scope
I Syntax: let name = exp1 in exp2
I Here, the scope of name is exp2
I A local definition may temporarily hide a more global one.

4

Local Definition Examples I

let x = 4+5 in 2*x;;
- : int = 18
x;;
Characters 0-1:

x;;
^

Error: Unbound value x
let x = 17;;
val x : int = 17
x;;
- : int = 17
let y = x+1 in y/3;;
- : int = 6

5

Local Definition Examples II

let x = 4 in
let y = x+1 in
let x = 2*y in x;;
- : int = 10

let x = 4 in
(let x = 17 in x+1) + x;;
- : int = 22

6

Visibility of Definitions

let x = 1;;
...

}
x = 1

let x = 2 in
...

}
x = 2

let x = 3 in
...

}
x = 3

...
}

x = 2
...

}
x = 1

Local definitions hide more global definitions

7

Simultaneous Definitions

I let x = e :
e is evaluated w.r.t. the value bindings before the let

I let x1 = e1 and x2 = e2 :
both expressions are evaluated w.r.t. the value bindings before the let

I Same effect as let x2 = e2 and x1 = e1
I Works both with global and local definitions

8

Simultaneous Definitions Examples I
let x = 1;;
val x : int = 1

(∗ sequential definitions ∗)
let x = 2 in

let y = x + 1 in (∗ y = 2+1 ∗)
x*y;; (∗ 2∗3 ∗)

- : int = 6

(∗ simultaneous definition ∗)
let x = 2

and y = x+1 in (∗ y = 1+1 ∗)
x*y;; (∗ 2∗2 ∗)

- : int = 4

9

