
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 3 - Sequence 5: Advanced topics about data types

Precise typing

I A sum type with only one constructor can be useful to discriminate between
two types that are structurally equivalent but semantically different

2

Euros are not dollars I

type euro = Euro of float;;
type euro = Euro of float
type dollar = Dollar of float;;
type dollar = Dollar of float
let euro_of_dollar (Dollar d) = Euro (d /. 1.33);;
val euro_of_dollar : dollar -> euro = <fun>
let x = Dollar 4.;;
val x : dollar = Dollar 4.
let y = Euro 5.;;
val y : euro = Euro 5.

3

Euros are not dollars II

let invalid_comparison = (x < y);;
Characters 30-31:

let invalid_comparison = (x < y);;
^

Error: This expression has type euro but an expression was expected
of type

dollar
let valid_comparison = (euro_of_dollar x < y);;
val valid_comparison : bool = true

4

Disjunctive patterns

I Sometimes, the same code is duplicated in several branches.
I or-patterns allow you to factorize these branches into a unique branch.
I “some_pattern_1 | some_pattern_2” corresponds to the observation of

some_pattern_1 or some_pattern_2.
I some_pattern_1 and some_pattern_2 must contain the same identifiers.

5

Disjunctive pattern I
let remove_zero_or_one_head = function

| 0 :: xs -> xs
| 1 :: xs -> xs
| l -> l;;

val remove_zero_or_one_head : int list -> int list = <fun>
let remove_zero_or_one_head’ = function

| 0 :: xs | 1 :: xs -> xs
| l -> l;;

val remove_zero_or_one_head’ : int list -> int list = <fun>
let remove_zero_or_one_head’’ = function

| (0 | 1) :: xs -> xs
| l -> l;;

val remove_zero_or_one_head’’ : int list -> int list =
<fun>

6

as-patterns

I It is sometimes convenient to name a matched component.
I The pattern “some_pattern as x” is read as

“If the value can be observed using some_pattern, name it x.”

7

as-pattern I

let rec duplicate_head_at_the_end = function
| [] -> []
| (x :: _) as l -> l @ [x];;

val duplicate_head_at_the_end : ’a list -> ’a list = <fun>
let l = duplicate_head_at_the_end [1;2;3];;
val l : int list = [1; 2; 3; 1]

8

Constrained pattern matching branch using when

I A boolean expression, called a guard, can add an extra constraint to a pattern.
I This guard is introduced by the keyword when.

9

Guarded patterns I

let rec push_max_at_the_end = function
| ([] | [_]) as l -> l
| x :: ((y :: _) as l) when x <= y -> x :: push_max_at_the_end l
| x :: y :: ys -> y :: push_max_at_the_end (x :: ys);;

val push_max_at_the_end : ’a list -> ’a list = <fun>

10

Other kinds of types

I There are advanced features of the type system that we did not show:
I Objects
I First-class modules
I Polymorphic variants
I Generalized algebraic datatypes

Next week, you will learn how to write
higher-order programs

over all the types we have seen so far!

11

