Introduction to
Functional Programming in OCaml/

Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 2 - Sequence 3: Constructing and Observing Arrays

-

. 2 i

g e‘“\E P44’ 2

n @ > rd

22 § A% lrrzia — OCamla®
E AN INVENTORS FOR THE DIGITALWORLD

Unbounded composite values

» A limitation of tuples and records: their sizes are statically bounded.
» Arrays allow to define composite values whose size is dynamically defined.

» For type-checking to remain simple, all array elements must have the same type.

One array |

let p = [I 1; 2; 3 [];;
val p : int array = [|1; 2; 3]]

A function producing arrays of multiple size |

let square x = X * X;;

val square : int —-> int = <fun>

let squares n = Array.init n square;;

val squares : int -> int array = <fun>
let s1 = squares 5;;

val sl : int array = [10; 1; 4; 9; 16]]

Syntax for array type

» The type of an array whose elements have some_type is
some_type array
» array is a predefined type constructor.

» The standard library module Array provides functions over arrays.

Syntax for array construction

> Arrays whose elements and sizes are known at compile-time are written:
[| some_expression; ...; some_expression |]

» The function Array.make expects an integer representing the size of the array
and a value to initialize each component of the array.

» The function Array.init expects an integer representing the size of the array
and a function to initialize each component of the array.

» The initialization function is given the index
of the component and must return its value.

» Array.length returns the size of an array.

Syntax to observe array cells

» To observe a specific component of an array using an index:
some_expression. (some_expression)

> Indexes of array a are taken between 0 and Array.length a - 1.

» To observe several components of an array, one can use array patterns:

[| some_pattern; ...; some_pattern |]

Accessing array cells |

let swap a = [I a.(1); a.(0) 1]1;;
val swap : ’a array —> ’a array = <fun>

let b = swap [| 0; 1 [];;
val b : int array = [|1; 0l]
let ¢ = swap [| O; 1; 2 [];;

val ¢ : int array = [|1; 0l]

Pattern matching over arrays |

let swap [| x; v 11 = [l yv; x 11;;
Characters 9-32:
let swap [| x; vy |11 = [l y; x |1;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Cr 1]
val swap : ’a array —> ’a array = <fun>
let t = swap [I 2; 1 [];;
val t : int array = [I1; 2]]
let t = swap [I 2; 1; O [|];;
Exception: Match_failure ("//toplevel//", 1, 9).

In the machine

Program Machine

letp=1[]1;2;3]] I 1 | > | 3 I

letq=1[|p;p|] | E

» In memory, an array is a heap-allocated block.

10

Pitfalls: Heterogeneous element types

» All the elements of an array must have the same type.

11

Type clash between array components |

let a = [| true; 1 |];;
Characters 17-18:
let a = [| true; 1 [|];;

Error: This expression has type int but an expression was expected

of type
bool

12

Pitfalls: Out of bound

» The compiler cannot ensure that all observation is valid.

> A negative index or an index greater than Array.length a - 1 is an invalid
observation of the array a.

13

There is nothing outside |

let a = [| 0; 1; 2 [];;

val a : int array = [[0; 1; 2]]
let x = a.(3);;

Exception: Invalid_argument "index out of bounds".
let vy = a.(-1);;
Exception: Invalid_argument "index jout of bounds".

14

