
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 6 - Sequence 4: Modules as compilation units



Compiling an OCaml programs

I The file extension for OCaml source code is .ml.
I OCaml enjoys separate compilation.
I To produce an executable program:

1. Compile each file separately following dependencies.
2. Link the resulting compilation units altogether.

I ocamlc is the compiler to the OCaml virtual machine.
I ocamlopt is the compiler to native code.
I (In the sequel, we will use ocamlc

but the same commands work with ocamlopt.)

2



Compiling an OCaml program

I Imagine that your project contains a.ml and b.ml and that b.ml uses a.ml.
I First, compile a.ml:

ocamlc -c a.ml
I This command produces 2 files:

I a.cmo: the bytecode (would be a.cmx if native code)
I a.cmi: a compiled interface (see next slide)

I Now, compile b.ml:
ocamlc -c b.ml

I And finally, link a.cmo and b.cmo into an executable prog:
ocamlc -o prog a.cmo b.cmo

I The order of the cmo files must follow the dependencies.

3



Compilation units are modules
I A file named a.ml appears as a module A in the program.
I Hence, to refer in b.ml to a value x defined in a.ml, just write A.x.
I The interface of the module a.ml can be written in file named a.mli.
I For instance, if A exports a type t and a value x of this type, a.mli is:

type t
val x : t

I When a.ml is compiled, the compiler looks for a.mli to compile the interface.
If it does not exist, it uses the inferred module interface.

I Interfaces can also be compiled independently:
ocamlc -c a.mli

. . . produces the file a.cmi.

4



Where is the main function?

I There is no main function in an OCaml program.
I The evaluation of a program is the evaluation of its modules.
I The modules are evaluated in the order given in the linking command.

5



Libraries
I Several modules can be aggregated as a library into one .cma file:

ocamlc -a a.cmo b.cmo -o lib.cma

I This library can be used by another program as if it were a compilation unit.
I To install a library in the system, copy the compiled files (.cmi, .cmo and .cma)

into an arbitrary directory some_dir.
I To use a library to compile another file:

ocamlc -I some_dir -c c.ml

I To use a library during linking:
ocamlc -I some_dir -o prog lib.cma c.cmo

I The findlib tool automates
the library configuration and installation process.

6



Build system
I OCaml comes with a build system tool named ocamlbuild.
I It automatically builds compiled files, libraries and executable programs.
I It automatically computes needed dependencies.
I It is configurable through a _tag file.
I It interacts with findlib.
I It is customizable using plugins.
I To build a program a.byte out of a.ml and its dependencies, typing:

ocamlbuild a.byte

. . . usually works.

7



Package manager

I OCaml has a package manager named opam.
I Find it at http://opam.ocamlpro.com/
I A package may contain libraries and programs useful to other developments.
I This is a simple way to get OCaml packages developed by our community!
I We look forward to see there your own package!

8

http://opam.ocamlpro.com/

