Introduction to
Functional Programming in OCaml/

Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 1 - Sequence 4: Functions

-

. 2 i

g e‘“\E P44’ 2

n @ > rd

22 § A% lrrzia — OCamla®
E AN INVENTORS FOR THE DIGITALWORLD

Defining Functions

> Global definition of a function with one argument :
let f x = exp

» Local definition of a function with one argument :

let f x = expl in exp2
» Scoping rules as before (sequence 3) : local definitions hide more global ones
» Application of function named f to expression e: f e

» Parenthesis indicate structure of expressions

Fonction Definition and Application |

let £ x = x+1;; (* global definition x)
val £ : int -> int = <fun>

£ 17;;

- : int = 18

let g y = 2%y (x local definition)

in g 42;;

- : int = 84

£ff1;;

Characters 1-2:
£f£f1;;

Error: This function has type int -> int
It is applied to too many arguments; maybe you forgot a *;’

Fonction Definition and Application II

f) 1;;
Characters 4-5:
(f £) 1;;

Error: This expression has type int -> int
but an expression was expected of type int

f (£ Dy
- : int = 3

Lexical Scoping

Lexical Scoping: identifier used in the definition of a function refers to the identifier
visible at the moment of function definition

Dynamic Scoping: ... visible at the moment of function invocation

Lexical Scoping |

(x with local definitions)
let £ x = x+1 in
let gy =1f (f y) in
let £ x = 2*%x in
g 5;;
Characters 71-72:
let £ x = 2*x in
Warning 26: unused variable f.
- : int =7

(x with global definitions)
let f x = x+1;;
val £ : int -> int = <fun>

Lexical Scoping Il

let gy =1 (f y);;

val g : int —> int = <fun>
let f x = 2%x;;

val f int -> int = <fun>
g 553

- : int = 7

Identifiers are not Variables

» An identifier may be hidden by a new definition for the same name
» Do not confuse with “changing the value of a variable”

» Static binding can give you indirect access to an otherwise hidden identifier

Redefinition is not Assignment |

let a = 1;;
val a : int

Il
—_

let £ x = x + aj;;
val f : int -> int = <fun>

f 2;;
- int = 3
let a = 73;;

