
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 5 - Sequence 2: Getting information in and out

Back to the toplevel

We have been using OCaml’s toplevel extensively up to now.
I it reads our program, incrementally
I it prints the result of the execution

... we could do without input/output operations!

For real programs, OCaml offers a rich set of I/O primitives.
We will now look at some of them.

But let’s first meet the unit type.

2

The unit type

();;

− : unit = ()

The unit type
I the typical input or result type

of a function with side effects
I has only one value
I also called unit
I written ()
I why this syntax? will be clear in a few slides

3

Simple output

Printing an integer
print_int;;

− : int −> unit = <fun>

This function
I takes an integer
I prints the integer on standard output
I returns the value () of the unit type

4

Simple output

Printing an integer
print_int 12345;;

12345− : unit = ()

What happens

I 12345 is printed on standard output
I the toplevel prints its message, which says

I the evaluation returns the value ()
I of the unit type
I there is no identifier bound to it - :

5

Simple input

Reading a line
read_line;;

− : unit −> string = <fun>

This function
I takes as input the value () of the unit type
I reads a line of characters from standard input as a string

6

Simple input
Reading a line
read_line();;

some text
− : string = "some␣text"

What happens

I read_line receives the argument ()
I it starts reading from standard input
I we type some text and hit return
I the toplevel prints its message, which says

I the evaluation returns the value "some text"
I of the string type
I there is no identifier bound to it - :

7

About the syntax

See why () for the unique value of the unit type?

read_line()

This looks like a function with no argument in other languages.
It’s more familiar for outsiders!

Remember, it really is:

read_line ()

8

Simple input and output

Printing other base types

print_char : char -> unit
print_string : string -> unit
print_float : float -> unit

Flushing and newline

val print_newline : unit -> unit

Print a newline and flush standard output.

9

Simple input and output

There is much more

I standard input, standard output and standard error
I create, open and close files
I read and write on channels
I sophisticated parsing, like scanf, well typed!
I see the manual section on Pervasives

Notice: some of these functions are not implemented
in the toplevel running in your browser.

10

Summary

Unit type, Input and Output
I The unit type is often used with functions with side effects,

like print_int : int -> unit
I read_line() is really read_line applied to ()
I We now know how to perform basic input/ouput
I OCaml has many more sophisticated input/output functions,

look at the reference manual to know more

11

