
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 3 - Sequence 2: Tree-like values

A tree-like representation for databases

I Consider the following tree-like representation for databases:

type database =
| NoContact
| DataNode of database * contact * database

I We will enforce an invariant.
I A database node DataNode (left, c, right) is well-formed if

I every contact in left is lexicographically smaller than c;
I every contact in right is lexicographically greater than c.

2

In the machine

DataNode NoContact NoContact

DataNode

luke

leila

DataNode NoContact NoContact

yoda

I is the representation of
DataNode(DataNode(NoContact, leila, NoContact),

luke,
DataNode(NoContact, yoda, NoContact))

I This value fulfills our invariant!

3

Looking for a contact

let search db name =
let rec traverse = function

| NoContact ->
Error

| DataNode (left, contact, right) ->
if contact.name = name then

FoundContact contact
else if name < contact.name then

traverse left
else

traverse right
in
traverse db

4

A more efficient lookup

I In the worst case, the contact is not found and we have crossed a number of
nodes which is bounded by the height of the tree.

I In the array-based implementation, the entire database is traversed.
I It is unlikely that the height of the tree is equal to the number of contacts!

(This would mean that the tree is degenerated into a list.)
I As an exercise, try to maintain the extra invariant that the tree is balanced, i.e.

that its height is bound by the logarithm of the number of contacts.

5

Inserting a contact
let insert db contact =

let rec traverse t =
match t with

| NoContact ->
DataNode (NoContact, contact, NoContact)

| DataNode (left, contact’, right) ->
if contact.name = contact’.name then

t
else if contact.name < contact’.name then

DataNode (traverse left, contact’, right)
else

DataNode (left, contact’, traverse right)
in
traverse db

6

Insertion shares subtrees between databases

1

2

3 4

5

6 77

1

2

3 4

5

66 7

1'

5'

6 7'

8

7

Removing an element

I Removing an element seems a bit complicated. . .
I We should be able to focus on the tree problem
independently of the fact that it represents a database.

I This is the separation of concerns principle.

1

2

3 4

5

6 7

1

2

3 4

5

6 7

✗

2

3 4

5

6 7

?

Forthcoming parameterized types will help us
perform such a modular development.

8

