
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 2 - Sequence 0: User-defined types



Typed functional programming

The next 2 weeks:

How to structure code and data with types?

2



Overview of Week 2

1. User-defined types
2. Tuples
3. Records
4. Arrays
5. Case study: A small typed database

3



Types as documentation

I A value of a primitive type can be used to encode some specific data.
I Example: day = {0, 1, 2, 3, 4, 5, 6} ⊂ int
I A type identifier carries an informal invariant.
I Example: An integer x is a valid day if 0 ≤ x ≤ 6.
I Writing

is_week_end : day -> bool

informally means that integers between 0 and 6
are the only valid inputs for this function.

4



Representing colors using integers I

type color = int;;
# type color = int
let red : color = 0;;
# val red : color = 0
let white : color = 1;;
# val white : color = 1
let blue : color = 2;;
# val blue : color = 2

5



Type annotations I

type positive = int;;
# type positive = int
let abs (x : int) = (if x < 0 then -x else x : positive);;
# val abs : int -> positive = <fun>
let abs’ (x : int) : positive = if x < 0 then -x else x;;
# val abs’ : int -> positive = <fun>

6



Syntax to declare a type

I To declare a type:
type some_type_identifier = some_type

I some_type_identifier is a synonym or abbreviation for some_type.
I A type identifier must start with a lowercase letter.
I For now, some_type can be int, bool, string, char, float.
I We will discover other type constructions soon!

7



Syntax to annotate with a type
I To annotate an identifier with a type:

let x : some_type = some_expression
I To annotate a function argument with a type:

let f (x : some_type) = some_expression
I To constrain the return type of a function:

let f x : some_type = some_expression
I To constrain the type of an expression:

let f x = (some_expression : some_type)

8



In the machine

I Type annotations have no impact on the program execution.
I Let “type t = int” and x be a value of type t, then x is also of type int.
I Hence, a value of type t is represented as a value of type int in the machine.

9



Pitfalls: Multiple type definitions

I In the REPL, be careful with unintended hiding of type identifiers.
I The error messages may be hard to understand.

10



Representing positive integers I
type t = int;;
# type t = int
let x : t = 0;;
# val x : t = 0
type t = bool;;
# type t = bool
let f (x : t) = not x;;
# val f : t -> bool = <fun>
let z = f x;;
# Characters 10-11:

let z = f x;;
^

Error: This expression has type t/1016 = int
but an expression was expected of type t/1018 = bool

11



Pitfalls: Limitations of type synonyms

I Consider type positive = int.
I The type synonym positive is only a documentation.
I It does not provide more static guarantees about positivity than int.
I For instance, the following code is accepted by the type-checker:

let x : positive = -1

I OCaml provides many ways to define more precise types.

12


