
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 3 - Sequence 3: Case study: a story teller

Case study: a story teller

I Types play a central part in OCaml programming.
I Writing the right type declarations helps

the programmer implement the right program.
I We will now illustrate this type-directed programming.

2

A story teller I

type story = {
context : context;
perturbation : event;
adventure : event list;
conclusion : context;

}
and context = { characters : character list }
and character = { name : string; state : state; location : location }
and event = Change of character * state | Action of character * action
and state = Happy | Hungry
and action = Eat | GoToRestaurant
and location = Appartment | Restaurant;;

3

A story teller II
type story = {
context : context;
perturbation : event;
adventure : event list;
conclusion : context;

}
and context = { characters : character list; }
and character = {
name : string;
state : state;
location : location;

}
and event =

Change of character * state
| Action of character * action

and state = Happy | Hungry
4

A story teller III

and action = Eat | GoToRestaurant
and location = Appartment | Restaurant

5

A story teller IV

let compatible_actions_for_character character context =
match character with
| { location = Restaurant } -> [Eat]
| { location = Appartment } -> [GoToRestaurant]

;;
val compatible_actions_for_character :
character -> ’a -> action list = <fun>

6

A story teller V

let apply_action character = function
| Eat ->
{ state = Happy;
location = character.location; name = character.name }

| GoToRestaurant ->
{ location = Restaurant;
state = character.state; name = character.name }

;;
val apply_action : character -> action -> character = <fun>

7

A story teller VI
let compatible_actions context =

let rec aux = function
| [] -> []
| character :: cs ->

let can_do = compatible_actions_for_character character
context in

let rec aux’ = function
| [] -> []
| a :: actions -> Action (character, a) :: aux’ actions

in
aux’ can_do

in
aux context.characters

;;
val compatible_actions : context -> event list = <fun>

8

A story teller VII

let possible_changes_for_character character context =
match character with
| { state = Happy } -> [Hungry]
| { state = Hungry } -> []

;;
val possible_changes_for_character :
character -> ’a -> state list = <fun>

let apply_change character state =
{ name = character.name; state = state; location =
character.location }

;;
val apply_change : character -> state -> character = <fun>

9

A story teller VIII
let possible_changes context =

let rec aux = function
| [] -> []
| character :: cs ->

let possible_changes = possible_changes_for_character
character context in

let rec aux’ = function
| [] -> []
| c :: changes -> Change (character, c) :: aux’ changes

in
aux’ possible_changes

in
aux context.characters

;;
val possible_changes : context -> event list = <fun>

10

A story teller IX

let character_of_event = function
| Action (character, _) -> character
| Change (character, _) -> character

;;
val character_of_event : event -> character = <fun>

11

A story teller X
let apply event context =

let rec aux = function
| [] -> assert false
| character :: cs ->

if character = character_of_event event then
match event with

| Action (_, action) -> apply_action character action :: cs
| Change (_, change) -> apply_change character change :: cs

else
character :: aux cs

in
{ characters = aux context.characters }

;;
val apply : event -> context -> context = <fun>

12

A story teller XI

let rec is_one_of state states =
match states with
| [] -> false
| state’ :: ss -> state = state’ || is_one_of state ss

;;
val is_one_of : ’a -> ’a list -> bool = <fun>

13

A story teller XII

let rec all_characters_are states = function
| [] ->
true

| character :: cs ->
is_one_of character.state states && all_characters_are states cs

;;
val all_characters_are :
state list -> character list -> bool = <fun>

14

A story teller XIII
let random_pick xs =
List.nth xs (Random.int (List.length xs))

;;
val random_pick : ’a list -> ’a = <fun>
let something_happens context =

let what_can_happen = compatible_actions context @
possible_changes context in

let event = random_pick what_can_happen in
event, apply event context

;;
val something_happens : context -> event * context = <fun>
let happy context =
all_characters_are [Happy] context.characters

;;
val happy : context -> bool = <fun>

15

A story teller XIV

let rec end_story events context =
if happy context then
context, List.rev events

else
let event, context = something_happens context in
end_story (event :: events) context

;;
val end_story :
event list -> context -> context * event list = <fun>

16

A story teller XV

let make_story initial_context =
let perturbation, context = something_happens initial_context in
let conclusion, adventure = end_story [] context in
{
context = initial_context;
perturbation = perturbation;
adventure = adventure;
conclusion = conclusion

}
;;
val make_story : context -> story = <fun>

17

A story teller XVI

let describe_location = function
| Appartment -> "at␣home"
| Restaurant -> "at␣the␣restaurant"

;;
val describe_location : location -> string = <fun>
let describe_state = function
| Happy -> "happy"
| Hungry -> "hungry"

;;
val describe_state : state -> string = <fun>

18

A story teller XVII

let describe character =
character.name ^ "␣was␣"
^ describe_location character.location
^ "␣and␣was␣" ^ describe_state character.state ^ ".␣"

;;
val describe : character -> string = <fun>

19

A story teller XVIII

let tell_context context =
let rec aux = function
| [] -> ""
| character :: characters -> describe character ^ aux characters

in
aux context.characters

;;
val tell_context : context -> string = <fun>

20

A story teller XIX

let tell_action = function
| Eat -> "ate"
| GoToRestaurant -> "went␣to␣the␣restaurant"

;;
val tell_action : action -> string = <fun>

21

A story teller XX

let tell_event = function
| Action (character, action) ->
character.name ^ "␣" ^ tell_action action ^ ".␣"

| Change (character, state) ->
character.name ^ "␣was␣made␣" ^ describe_state state ^ ".␣"

;;
val tell_event : event -> string = <fun>

22

A story teller XXI

let rec tell_adventure = function
| [] -> ""
| event :: adventure -> tell_event event ^ tell_adventure adventure

;;
val tell_adventure : event list -> string = <fun>

23

A story teller XXII

let tell story =
"Once␣upon␣a␣time,␣"
^ tell_context story.context
^ "One␣day,␣something␣wrong␣happened.␣"
^ tell_event story.perturbation
^ tell_adventure story.adventure
^ "At␣the␣end,␣the␣peace␣was␣restored.␣"
^ tell_context story.conclusion

;;
val tell : story -> string = <fun>

24

A story teller XXIII

let story = tell (make_story {
characters = [
{ name = "Sophie"; location = Appartment; state = Happy };
{ name = "Socrate"; location = Appartment; state = Happy };

]
});;
val story : string =
"Once␣upon␣a␣time,␣Sophie␣was␣at␣home␣and␣was␣happy.␣Socrate␣was␣
at␣home␣and␣was␣happy.␣One␣day,␣something␣wrong␣happened.␣Sophie␣
went␣to␣the␣restaurant.␣At␣the␣end,␣the␣peace␣was␣restored.␣
Sophie␣was␣at␣the␣restaurant␣and␣was␣happy.␣Socrate␣was␣at␣home␣
and␣was␣happy.␣"

25

Assisted incremental programming

I Our stories are a bit boring. . .
I If we change type declarations, the type-checker will assist us

by pinpointing what part of the code must be updated.
I Assume now that our characters are zombies and the restaurant can be closed. . .

26

Higher-order programming
I The first version of our story teller is 178 lines long.
I A skilled OCaml programmer writes the same code in 133 lines (-25%).

let rec all_characters_are states = function
| [] -> true
| character :: cs ->

is_one_of states character.state && all_characters_are states cs

. . . can be written using a higher-order function:
let all_characters_are states =
List.for_all (is_one_of states)

Next week
you will learn how to write

your own higher-order function!
27

