
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 2 - Sequence 4: Case study: A small (typed) database

Putting everything together

I A database for a contact list with 3 kinds of queries: insert, delete, search.
I The database engine is a function of type:

database -> query -> status * database * contact
I The status is true if the query went well.

2

A small typed database I

(∗ A phone number is a sequence of four integers . ∗)
type phone_number = int * int * int * int;;
type phone_number = int * int * int * int

3

A small typed database II

(∗ A contact has a name and a phone number. ∗)
type contact = {

name : string;
phone_number : phone_number

};;
type contact = {

name : string;
phone_number : phone_number;

}
(∗ Here is a dumb contact. ∗)
let nobody = { name = ""; phone_number = (0, 0, 0, 0) };;
val nobody : contact =

{name = ""; phone_number = (0, 0, 0, 0)}

4

A small typed database III

(∗ A database is a collection of contacts . ∗)
type database = {

number_of_contacts : int;
contacts : contact array;

};;
type database = {

number_of_contacts : int;
contacts : contact array;

}

5

A small typed database IV

(∗ [make n] is the database with no contact and at most [n] contacts
stored inside . ∗)

let make max_number_of_contacts =
{

number_of_contacts = 0;
contacts = Array.make max_number_of_contacts nobody

};;
val make : int -> database = <fun>

6

A small typed database V
(∗ Queries are represented by a code and a contact .

− If the code is 0 then the contact must be inserted .
− If the code is 1 then the contact must be deleted .
− If the code is 2 then we are looking for a contact with the same name
in the database .

∗)
type query = {

code : int;
contact : contact;

}
let search db contact =

let rec aux idx =
if idx >= db.number_of_contacts then

(false, db, nobody)
else if db.contacts.(idx).name = contact.name then

(true, db, db.contacts.(idx))
7

A small typed database VI

else
aux (idx + 1)

in
aux 0;;

type query = { code : int; contact : contact; }
val search :

database -> contact -> bool * database * contact = <fun>

8

A small typed database VII
let insert db contact =

if db.number_of_contacts >= Array.length db.contacts then
(false, db, nobody)

else
let (status, db, _) = search db contact in
if status then (false, db, contact) else

let cells i =
if i = db.number_of_contacts then contact else

db.contacts.(i)
in
let db’ = {

number_of_contacts = db.number_of_contacts + 1;
contacts = Array.init (Array.length db.contacts) cells

}
in
(true, db’, contact);;

9

A small typed database VIII

val insert :
database -> contact -> bool * database * contact = <fun>

10

A small typed database IX
let delete db contact =

let (status, db, contact) = search db contact in
if not status then (false, db, contact)
else

let cells i = if db.contacts.(i).name = contact.name then nobody
else db.contacts.(i) in
let db’ = {

number_of_contacts = db.number_of_contacts - 1;
contacts = Array.init (Array.length db.contacts) cells

}
in
(true, db’, contact);;

val delete :
database -> contact -> bool * database * contact = <fun>

11

A small typed database X

(∗ Engine parses and interprets the query . ∗)
let engine db (code, contact) =

if code = 0 then insert db contact
else if code = 1 then delete db contact
else if code = 2 then search db contact
else (false, db, nobody);;

val engine :
database -> int * contact -> bool * database * contact =
<fun>

12

A small typed database XI

let db = make 5;;
val db : database =

{number_of_contacts = 0;
contacts =
[|{name = ""; phone_number = (0, 0, 0, 0)};

{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)}|]}

13

A small typed database XII

let (status, db, contact) = engine db (0, { name = "luke";
phone_number = (1, 2, 3, 4) });;

val status : bool = true
val db : database =

{number_of_contacts = 1;
contacts =
[|{name = "luke"; phone_number = (1, 2, 3, 4)};

{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)}|]}

val contact : contact =
{name = "luke"; phone_number = (1, 2, 3, 4)}

14

A small typed database XIII

let (status, db, contact) = engine db (0, { name = "darth";
phone_number = (4, 3, 2, 1) });;

val status : bool = true
val db : database =

{number_of_contacts = 2;
contacts =
[|{name = "luke"; phone_number = (1, 2, 3, 4)};

{name = "darth"; phone_number = (4, 3, 2, 1)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)}|]}

val contact : contact =
{name = "darth"; phone_number = (4, 3, 2, 1)}

15

A small typed database XIV

let (status, db, contact) = engine db (2, { name = "luke";
phone_number = (1, 2, 3, 4) });;

val status : bool = true
val db : database =

{number_of_contacts = 2;
contacts =
[|{name = "luke"; phone_number = (1, 2, 3, 4)};

{name = "darth"; phone_number = (4, 3, 2, 1)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)}|]}

val contact : contact =
{name = "luke"; phone_number = (1, 2, 3, 4)}

16

A small typed database XV

let (status, db, contact) = engine db (1, { name = "luke";
phone_number = (4, 3, 2, 1) });;

val status : bool = true
val db : database =

{number_of_contacts = 1;
contacts =
[|{name = ""; phone_number = (0, 0, 0, 0)};

{name = "darth"; phone_number = (4, 3, 2, 1)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)}|]}

val contact : contact =
{name = "luke"; phone_number = (1, 2, 3, 4)}

17

A small typed database XVI

let (status, db, contact) = engine db (2, { name = "luke";
phone_number = (1, 2, 3, 4) });;

val status : bool = false
val db : database =

{number_of_contacts = 1;
contacts =
[|{name = ""; phone_number = (0, 0, 0, 0)};

{name = "darth"; phone_number = (4, 3, 2, 1)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)}|]}

val contact : contact =
{name = ""; phone_number = (0, 0, 0, 0)}

18

A purely functional database engine
A “non destructive” program

I This database engine has type:
database -> query -> status * database * contact

I As shown in this type, a new database is created each time a query is processed.
I Hence, previous versions of the database are still valid.
I In imperative programming, applying a query would modify the database instead.

This is a purely functional program.

19

Purely functional programs

Side-effects considered harmful
I Functional programming encourages a style in which functions produce values

instead of modifying the memory as in imperative programming.
I The evaluation of a function does not depend on the state of the program but

only on its arguments. Exactly like in Mathematics!
I Mathematical specification can therefore be used on functional programs.
I For instance, for all database d and for all contact c,

if insert db c = (true, db’, _)
then search db’ c = (true, db’, c)

I As it does not depend on the state of the machine,
a functional program can be used anytime.
It is more composable than an imperative one.

20

Weaknesses of our implementation

Imprecise typing of query results
I Search queries return a contact while insertion queries return a new database.
I The type of engine forces us to use a single type of query results.
I The type of engine should be the union of query results types.

Inefficient duplications of databases
I Each time a contact is inserted, the database is duplicated!
I We should use a datastructure that enables more sharing.

Forthcoming algebraic datatypes
will be an elegant answer to all these problems!

21

