Introduction to
Functional Programming in OCaml/

Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 2 - Sequence 4: Case study: A small (typed) database

DIDEROT

~
(rrzie OCamlag®

PARIS
<0
)
7y o



Putting everything together

» A database for a contact list with 3 kinds of queries: insert, delete, search.
» The database engine is a function of type:
database —-> query —-> status * database * contact

» The status is true if the query went well.



A small typed database |

(* A phone number is a sequence of four integers .

type phone_number = int * int * int * int;;
# type phone_number = int * int * int * int



A small typed database Il

(* A contact has a name and a phone number. x)
type contact = {
name . string;
phone_number : phone_number
3
# type contact = {
name : string;
phone_number : phone_number;

Iy
(* Here is a dumb contact. )
let nobody = { name = ""; phone_number = (0, 0, 0, 0) };;

# val nobody : contact =
{name = ""; phone_number = (0, 0, 0, 0)}



A small typed database Il

(* A database is a collection of contacts. )
type database = {
number _of contacts : int;
contacts : contact array;
¥
# type database = {
number _of contacts : int;
contacts : contact array;



A small typed database IV

(*+ [make n] is the database with no contact and at most [n] contacts
stored inside . )
let make max _number of contacts =

{

number_of contacts = 0;
contacts = Array.make max_number_of_contacts nobody
+is

# val make : int —-> database = <fun>



A small typed database V
(* Queries are represented by a code and a contact.
— If the code is 0 then the contact must be inserted .
— If the code is 1 then the contact must be deleted .
— If the code is 2 then we are looking for a contact with the same name
in the database.
*)
type query = {
code : int;
contact : contact;
+
let search db contact =
let rec aux idx =
if idx >= db.number_ of contacts then
(false, db, nobody)
else if db.contacts.(idx) .name = contact.name then
(true, db, db.contacts. (idx))



A small typed database VI

else
aux (idx + 1)
in
aux 0;;
# type query = { code : int; contact : contact; }
val search :
database —> contact —-> bool * database * contact = <fun>



A small typed database VII

let insert db contact =
if db.number_of_contacts >= Array.length db.contacts then
(false, db, nobody)
else
let (status, db, ) = search db contact in
if status then (false, db, contact) else
let cells i =
if i = db.number_of contacts then contact else
db.contacts. (i)

in
let db’ = {
number_of contacts = db.number_of contacts + 1;
contacts = Array.init (Array.length db.contacts) cells
}
in

(true, db’, contact);;



A small typed database VI

# val insert :
database -> contact -> bool * database * contact = <fun>

10



A small typed database IX

let delete db contact =
let (status, db, contact) = search db contact in
if not status then (false, db, contact)
else
let cells i = if db.contacts.(i).name = contact.name then nobody
else db.contacts. (i) in
let db’ = {
number_ of contacts = db.number_ of contacts - 1;
contacts = Array.init (Array.length db.contacts) cells
}
in
(true, db’, contact);;

# val delete
database -> contact -> bool * database * contact = <fun>

11



A small typed database X

(x Engine parses and interprets the query. x)
let engine db (code, contact) =
if code = 0 then insert db contact
else if code 1 then delete db contact
else if code = 2 then search db contact
else (false, db, nobody);;
# val engine
database -> int * contact —-> bool * database * contact =
<fun>

12



A small typed database

let db = make 5;;

# val db :

database =

{number of contacts = 0;

contacts
[|{name =
{name =
{name =
{name =
{name =

13

nn.

mni.

nn.

mnimn.

nn.

phone_number =
phone_number =
phone_number =

phone_number

phone_number =

(0,
(0,
(0,
(0,
(0,

-

O O O O O

O O O O O

-

0)};
0)};
0)};
0)};
OBINE;



A small typed database Xl

let (status, db, contact) = engine db (0, { name = "luke";
phone_number = (1, 2, 3, 4) });;
# val status : bool = true
val db : database =
{number of contacts = 1;

contacts =
[|{name = "luke"; phone_number = (1, 2, 3, 4)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0O)}|]1%}

val contact : contact =
{name = "luke"; phone_number = (1, 2, 3, 4)}

14



A small typed database Xlli|I

let (status, db, contact) = engine db (0, { name = "darth";
phone_number = (4, 3, 2, 1) });;
# val status : bool = true
val db : database =
{number of contacts = 2;
contacts =
[|{name = "luke"; phone_number = (1, 2, 3, 4)};
{name = "darth"; phone_number = (4, 3, 2, 1)};

{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0O)}|]1%}

val contact : contact =
{name = "darth"; phone_number = (4, 3, 2, 1)}

15



A small typed database XIV

let (status, db, contact) = engine db (2, { name = "luke";
phone_number = (1, 2, 3, 4) });;
# val status : bool = true
val db : database =
{number of contacts = 2;
contacts =
[|{name = "luke"; phone_number = (1, 2, 3, 4)};
{name = "darth"; phone_number = (4, 3, 2, 1)};

{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0O)}|]1%}

val contact : contact =
{name = "luke"; phone_number

(1, 2, 3, O}

16



A small typed database XV

let (status, db, contact) = engine db (1, { name = "luke";
phone_number = (4, 3, 2, 1) });;
# val status : bool = true
val db : database =
{number of contacts = 1;

contacts =
[|{name = ""; phone_number = (0, 0, 0, 0)};
{name = "darth"; phone_number = (4, 3, 2, 1)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0O)}|]1%}

val contact : contact =
{name = "luke"; phone_number

(1, 2, 3, O}

17



A small typed database XVI

let (status, db, contact) = engine db (2, { name = "luke";
phone_number = (1, 2, 3, 4) });;
# val status : bool = false
val db : database =
{number of contacts = 1;

contacts =
[|{name = ""; phone_number = (0, 0, 0, 0)};
{name = "darth"; phone_number = (4, 3, 2, 1)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0)};
{name = ""; phone_number = (0, 0, 0, 0O)}|]1%}

val contact : contact =
{name = ""; phone_number = (0, 0, 0, 0)}

18



A purely functional database engine

A “non destructive” program
» This database engine has type:
database —-> query —-> status * database * contact
» As shown in this type, a new database is created each time a query is processed.

» Hence, previous versions of the database are still valid.

> In imperative programming, applying a query would modify the database instead.

v

This is a purely functional program.

19



Purely functional programs

20

Side-effects considered harmful

>

Functional programming encourages a style in which functions produce values
instead of modifying the memory as in imperative programming.

The evaluation of a function does not depend on the state of the program but
only on its arguments. Exactly like in Mathematics!
Mathematical specification can therefore be used on functional programs.
For instance, for all database d and for all contact c,
if insert db ¢ = (true, db’, )

then search db’ ¢ = (true, db’, c)

As it does not depend on the state of the machine,
a functional program can be used anytime.
It is more composable than an imperative one.




Weaknesses of our implementation

Imprecise typing of query results
» Search queries return a contact while insertion queries return a new database.
> The type of engine forces us to use a single type of query results.

» The type of engine should be the union of query results types.

Inefficient duplications of databases
» Each time a contact is inserted, the database is duplicated!

» We should use a datastructure that enables more sharing.

Forthcoming algebraic datatypes
will be an elegant answer to all these problems!

21



