Introduction to
Functional Programming in OCaml

Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen
Week 0 - Sequence 5:

The OCaml language: a bird’s eye view

DIDEROT

~
(rrzie OCamlag®

PARIS
<0
)
7y o

Taking the tour

Objective of this sequence
Present a few examples showcasing some of the features of the OCam/
language.

» safety from strong static typing and pattern matching

» conciseness from polymorphic typing and type inference

» expressiveness from higher order functions

Disclaimer
It is a quick tour to give you a taste of the language.
» you are not expected to fully understand the examples
right now...

» ... you will understand everything, and more,
at the end of the course!

> So hold tight, and let's go!

Meeting the lists

In the following examples, we will use the list data structure.

In OCaml, lists are built-in
> [] is the empty list

» a::1is a list having a as first element, and the list 1 as
rest

Type inference

Let's write a function to sum all elements of an integer list :

let rec suml =
function
(] -> 0
| a::rest > a + (suml rest);;

We did not declare any type in our code...

val suml : int list —> int = <fun>

The OCaml's type checker infers the good type for us, for free!

Strong static typing
All types are computed and enforced at compile time:
suml [1;2;3];;
—int =6
Sllml |:|11I|;Il2ll;ll3ll];;
Characters 6—9:
SUm/ ["1 n’, 112 nl, 113 n]',,,

Error: This expression has type string but an expression was expected of type
int

Well-typed programs cannot go wrong.

Robin Milner

Polymorphic types, and higher order

Let's generalise our function: 0 and + can be made into parameters:

let rec suml = # let rec fold op e =
function function
(] -> 0 (] -> e
| a::rest -> a + (suml rest);; | a::rest -> op a (fold op e rest);;

Again, we did not declare any type in our code...

val fold : ("a —>'b—>"b) —>'b —> ‘alist —> 'b = <fun>

The OCaml's type checker infers a general type for us, for freel

Polymorphism and higher order at work

fold (+) 0 [1;2;3;4;5];;
— int = 15

fold (%) 1 [1;2;3;4;5];;
— int = 120

fOld (-~) "nn [||1||;n2u;||3u];;
— : string = "123"

fold (fun (x,y) a > x +a) 0 [(2,4);(3,5)];;

cint =5

Pattern matching: ensuring all cases are handled

Let's write a function to remove all duplicates from a list of elements:

let rec destutter =

function
| (] -> [
| x 1y :: rest —>
if x = y then destutter (y :: rest)
else x :: destutter (y :: rest) ;;

Warning 8: this pattern—matching is not exhaustive.
Here is an example of a value that is not matched:

|

val destutter : ’'a list —> 'a list = <fun>

The compiler is telling us which case we missed!
Let's follow its advice...

Pattern matching: ensuring all cases are handled

let rec destutter =

function
| (] -> [
| x :: [> x :: []
| x 11y :: rest —>

if x = y then destutter (y :: rest)
else x :: destutter (y :: rest) ;;

val destutter : 'a list —> 'a list = <fun>
destutter [1;1;2;2;2;3;1;4;2;2];;

— cint list =[1; 2; 3; 1; 4; 2]

Conclusion

This was just a glimpse of the OCam/ language and features.

Much more is in store for you in the rest of the course.

10

