
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 3 - Sequence 0: Tagged values

Overview of Week 3

1. Tagged values
2. Recursive types
3. Tree-like values
4. Case study: a story teller
5. Polymorphic algebraic datatypes
6. Advanced topics

2

Avoiding meaningless values

I In the database example, we had:
engine : database -> query -> status * database * contact

I The returned database and contact are meaningful only if the returned status is
true. Otherwise, they must not be used.

I What if a type could capture this constraint?

3

Sum type: disjoint union of types

I We should change the type of engine into
engine : database -> query -> query_result

I Such that a value of type query_result can be either:
I an error, or
I a new database (in case an insertion or deletion query was successfully applied), or
I a contact and its index (in case a search query was successful).

I In OCaml, this is written as a sum type:
type query_result =
| Error
| NewDatabase of database
| FoundContact of contact * int

4

Sum type: disjoint union of types

type some_type_identifier =
| SomeTag of some_type * ... * some_type
| ...
| SomeTag of some_type * ... * some_type

I SomeTag is a tag identifier, start with an uppercase letter.
I Tag identifiers must be unique and distinct.
I A tag characterizes one specific type in this disjoint union of types.
I How to construct and observe values of this type?

5

Constructing tagged values

I Tags are also called constructors.
I A tag is used as a marker to classify values with respect to the different cases

of the union.

SomeTag (some_expression, ..., some_expression)

I Parentheses can be omitted if there is only one argument
and if that argument is a simple expression
(like a variable or a literal for instance).

6

A sum type for queries I

type query =
| Insert of contact
| Delete of contact
| Search of string;;

type query =
Insert of contact

| Delete of contact
| Search of string

7

A sum type for queries II

let luke = { name = "luke"; phone_number = (1, 2, 3, 4) }
let query1 = Insert luke;;
val luke : contact =

{name = "luke"; phone_number = (1, 2, 3, 4)}
val query1 : query =

Insert {name = "luke"; phone_number = (1, 2, 3, 4)}
let query2 = Search "luke";;
val query2 : query = Search "luke"
let query3 = Delete luke;;
val query3 : query =

Delete {name = "luke"; phone_number = (1, 2, 3, 4)}

8

A special case: Tags with no argument are
enumerations I

type color = Black | Gray | White;;
type color = Black | Gray | White
let batman_s_color = Black;;
val batman_s_color : color = Black

9

Observing tagged values by case analysis

I Let type t = A | B and x be an identifier of type t.
I x must have been constructed using A or B.
I Then, we know that x can be either an A or a B.
I If we want to write some computation that depends on x, we must provide some

code for the case x = A and some code for the case x = B.

10

Observing tagged values by case analysis

I When we observe a value of a sum type, several cases are possible.
I The programmer must provide an expression for each possible case.
I A case is described by a pattern of the form:

SomeTag (some_pattern, ..., some_pattern)
I A branch is composed of a pattern and an expression separated by an arrow.

some_pattern -> some_expression

11

Case analysis by pattern matching

I A pattern matching is a sequence of branches:
match some_expression with
| some_pattern -> some_expression
| some_pattern -> some_expression
| ...
| some_pattern -> some_expression

I There must be at least one branch in a pattern matching.
I To evaluate a pattern matching:

1. we compute the value of some_expression;
2. we try to match it with the pattern of the first branch ;
3. if it does not, we try the next one until we find a match.

12

A pattern matching

let engine db query =
match query with

| Insert contact -> insert db contact
| Delete contact -> delete db contact
| Search name -> search db name;;

13

Functions defined by cases

I Many functions start with a case analysis over one argument:
let f x = match x with
| some_pattern -> some_expression
| ...
| some_pattern -> some_expression

I There is syntactic shortcut to define them:
let f = function
| some_pattern -> some_expression
| ...
| some_pattern -> some_expression

14

A function defined by cases

let engine db query = function
| Insert contact -> insert db contact
| Delete contact -> delete db contact
| Search name -> search db name;;

15

In the machine

Program Machine

let p =Somebody luke
SomeBody x

let q = Nobody

Nobody

... luke ...

function
| Somebody x x.name→
| Nobody “nobody”→

?
x.name

“nobody”

I Each tag is represented by a (small) machine integer.
I A value of a sum type is either:

I a tag if it is a constructor with no argument;
I or a heap-allocated block starting with a tag.

I Pattern matching performs a dynamic test on this tag.
16

Pitfalls

I A pattern can be ill-typed.
I A case analysis can be non exhaustive.
I All these programming errors are caught by the type-checker!

17

Ill-typed patterns I

type data = None | Single of int | Pair of int * int;;
type data = None | Single of int | Pair of int * int
let bad_arity (x : data) =

match x with
| None x -> x
| Single x -> x
| Pair (x, _) -> x;;

Characters 48-54:
| None x -> x

^^^^^^
Error: The constructor None expects 0 argument(s),

but is applied here to 1 argument(s)

18

Ill-typed patterns II

let bad_argument_type (x : data) =
match x with

| Single true -> false
| _ -> true;;

Characters 63-67:
| Single true -> false

^^^^
Error: This pattern matches values of type bool

but a pattern was expected which matches values of type int

19

Non exhaustive case analysis I

type color = Black | Gray | White;;
type color = Black | Gray | White
(∗ Black < Gray < White and forall x , not (x < x). ∗)
let lighter c1 c2 =

match (c1, c2) with
| (Black, Black) -> false
| (White, White) -> false
| (Gray, Gray) -> false
| (Black, _) -> true
| (_, White) -> true
| (White, Gray) -> false
| (Gray, Black) -> false;;

20

Non exhaustive case analysis II

Characters 76-291:
..match (c1, c2) with

| (Black, Black) -> false
| (White, White) -> false
| (Gray, Gray) -> false
| (Black, _) -> true
| (_, White) -> true
| (White, Gray) -> false
| (Gray, Black) -> false..

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
(White, Black)
val lighter : color -> color -> bool = <fun>

21

