
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 3 - Sequence 1: Recursive types

Deep data structures

I Some standard data structures like lists and trees have an unbounded depth.
I We cannot define a type for lists because we have only seen “flat” data types.
I Informally, a list of integers is either:

I an empty list, or
I an integer and the rest of the list.

I We already know how to define a type by cases using sum types.
I Now, just realize that the “rest of the list” is also a list.

2

The type for list of integers I

type int_list =
| EmptyList
| SomeElement of int * int_list;;

type int_list = EmptyList | SomeElement of int * int_list

3

In the machine

I The following value:
SomeElement (1, SomeElement (3, EmptyList));;

. . . implements a linked list data structure:

SomeElement 1 SomeElement 3 EmptyList

4

Recursive types

I A sum type can refer to itself in its own definition.
I Such a sum type is therefore recursive.
I Functions over a recursive type are often defined by case analysis and recursion.

5

Computing the length of a list I

let rec length = function
| EmptyList -> 0
| SomeElement (x, l) -> 1 + length l;;

val length : int_list -> int = <fun>

6

A predefined type for lists

I The type for lists of elements of type t is predefined in OCaml and written:
t list

I The empty list is written:
[]

I [] is a special tag corresponding to EmptyList in the previous example.
I An integer i followed by the rest of the list r is written:

i :: r
I :: is a special tag corresponding to SomeElement.
I A list can be defined by enumeration:

[some_expression; ...; some_expression]

7

Computing the length of a OCaml list I

let rec length = function
| [] -> 0
| x :: xs -> 1 + length xs;;

val length : ’a list -> int = <fun>
let three = length [1; 2; 3];;
val three : int = 3

8

Reversing a list in quadratic time I

(∗ The ’@’ is a predefined operator that appends a list to another one. ∗)
let rec rev = function

| [] -> []
| x :: xs -> rev xs @ [x];;

val rev : ’a list -> ’a list = <fun>
let l = rev [1; 2; 3];;
val l : int list = [3; 2; 1]

9

Reversing a list in linear time I

let rec rev_aux accu = function
| [] -> accu
| x :: xs -> rev_aux (x :: accu) xs;;

val rev_aux : ’a list -> ’a list -> ’a list = <fun>
let rev l = rev_aux [] l;;
val rev : ’a list -> ’a list = <fun>
let l = rev [1; 2; 3];;
val l : int list = [3; 2; 1]

10

Remove repeated elements I

let rec uniq = function
| [] -> []
| [x] -> [x]
| x :: x’ :: xs ->

if x = x’ then
uniq (x’ :: xs)

else
x :: uniq (x’ :: xs);;

val uniq : ’a list -> ’a list = <fun>
let l1 = uniq [1;2;2;3;4;3];;
val l1 : int list = [1; 2; 3; 4; 3]

11

