
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 5 - Sequence 6: Variables, also known as References

Variables in imperative programming languages

Consider this program fragment in C or Java:

int i = 0;
i = i+1;

What is really going on
I the variable i is a name
I that refers to a memory cell (left of = sign)
I ... or to its contents (right of the = sign)
I this leads to complex notions, like L-values and R-values

2

Simulating variables in OCaml
We can use mutable records to get the same effect

1 int i = 0;
2 i = i+1;

may be written

type refcell = {mutable content: int};;

let i = {content=0};; (∗ line 1 ∗)
i.content <- i.content +1;; (∗ line 2 ∗)

No ambiguities
The update operator <- clearly indicates
what is read and what is written.

3

The predefined ref type

In OCaml there is a predefined ref type that works exactly this way.
We call the type, as well as the instances, reference.

type ’a ref = {mutable contents:’a}

It comes with convenient syntactic support
I a function ref: ’a -> ’a ref

to create the reference
I a prefix operator !

to read the content of the reference
I an infix operator r := v

to update the content of the reference r with v

4

A simple variable I

let i = ref 0;;
val i : int ref = {contents = 0}

i;;
- : int ref = {contents = 0}

i := !i + 1;;
- : unit = ()

i;;
- : int ref = {contents = 1}

5

Computing the integer log in base two I
let log2int n =

let count = ref 0 and v = ref n in
while !v > 1 do

count := !count + 1;
v := !v/2

done;
!count;;

val log2int : int -> int = <fun>

log2int 16;;
- : int = 4
log2int 1024;;
- : int = 10
log2int 1000000;;
- : int = 19

6

Reading a list of integers I

(∗ read a list of integers , and stop ∗)
(∗ when a non integer is entered ∗)

let read_intlist () =
(∗ a reference to hold the results ∗)
let l = ref [] in
(∗ the reading loop ∗)
let doread() =
try
while true do

l := (read_int ()):: !l
done

with _ -> ()
in

7

Reading a list of integers II

doread();
List.rev !l

;;
val read_intlist : unit -> int list = <fun>

8

Summary

I The usual variables of imperative languages can be implemented via mutable
records

I The notion of memory cell, and of contents of memory cell, are clearly
distinguished

I A special syntax is available for writing more concise programs using references

This concludes our short exploration of the imperative features
of the OCaml language.

9

