
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 5 - Sequence 3: Mutable data structures: mutable fields in records

Revisiting the records

We have met the record data structure in the course on Week 2 - Sequence 2.
I Records are tuples with distinct named components

I A typical record type declaration:
type some_type_identifier =

{ field_name_1 : some_type_1; ...; field_name_n : some_type_n }

I A typical record definition:
let r = { field_name_1 = e1; ...; field_name_n = en }

2

Two dimensional points I
(∗ 2D points ∗)
type point2D = { x : int; y : int };;
type point2D = { x : int; y : int; }
let origin = { x = 0; y = 0 };;
val origin : point2D = {x = 0; y = 0}

(∗ create a new point at offset of given one ∗)
let offset_h p dx = {p with x=p.x+dx};;
val offset_h : point2D -> int -> point2D = <fun>
let offset_v p dy = {p with y=p.y+dy};;
val offset_v : point2D -> int -> point2D = <fun>

(∗ no modification is made to the original point ∗)
let p = offset_h origin 10;;
val p : point2D = {x = 10; y = 0}

3

Two dimensional points II

origin;;
- : point2D = {x = 0; y = 0}

4

Revisiting the records: mutable fields

We can declare selected field records as mutable.

type some_type_identifier =
{ field_name_1 : some_type_1;

...;
mutable field_name_i : some_type_i;
...;
field_name_n : some_type_n }

The fields declared mutable can be modified in place.
For this, we use again the <- operator.

5

Colored movable two dimensional points I

(∗ RGB colors ∗)
type color = {r: int; g:int; b:int};;
type color = { r : int; g : int; b : int; }
let black = {r=255;g=255;b=255};;
val black : color = {r = 255; g = 255; b = 255}

(∗ movable colored 2D points ∗)
type point2D = { mutable x : int; mutable y : int ; c: color};;
type point2D = {

mutable x : int;
mutable y : int;
c : color;

}

6

Colored movable two dimensional points II
let origin = { x = 0; y = 0 ; c=black};;
val origin : point2D =

{x = 0; y = 0; c = {r = 255; g = 255; b = 255}}

(∗ create a new point at offset of given one ∗)
(∗ thanks to "with" we keep the same code ∗)
let offset_h p dx = {p with x=p.x+dx};;
val offset_h : point2D -> int -> point2D = <fun>
let offset_v p dy = {p with y=p.y+dy};;
val offset_v : point2D -> int -> point2D = <fun>

(∗ no modification is made to the original point ∗)
let p = offset_h origin 10;;
val p : point2D =

{x = 10; y = 0; c = {r = 255; g = 255; b = 255}}

7

Colored movable two dimensional points III
origin;;
- : point2D =
{x = 0; y = 0; c = {r = 255; g = 255; b = 255}}

(∗ start moving things around ∗)

let move p dx dy = p.x <- p.x+dx; p.y <- p.y+dy;;
val move : point2D -> int -> int -> unit = <fun>

(∗ p is modified ∗)

p;;
- : point2D =
{x = 10; y = 0; c = {r = 255; g = 255; b = 255}}

8

Colored movable two dimensional points IV

move p 2 2;;
- : unit = ()
p;;
- : point2D =
{x = 12; y = 2; c = {r = 255; g = 255; b = 255}}
move p (-1) (-1) ;;
- : unit = ()
p;;
- : point2D =
{x = 11; y = 1; c = {r = 255; g = 255; b = 255}}

9

Summary

I Selected fields of a record type can be declared mutable
I The update operator <- modifies in place these mutable fields

10

