Introduction to
Functional Programming in OCaml/

Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 5 - Sequence 3: Sequences and iterations

DIDEROT

~
(rrzie OCamlag®

PARIS
<0
)
7y o

One after the other, and round and round

We have functions with side effect

We can now
» create sequences

» write loops

Sequences of expressions

What if we want to print several values?

let _ = print_int 1 in let _ = print_int 2 in print_int 3;;

123— : unit = ()
More concisely

print_int 1; print_int 2; print_int 3;;
123— : unit = ()

Sequences of expressions

The expression sequence

el; e2; ... ; en

» evaluates each e; in turn

> drops all the results but the last one

> returns the result of en

» all intermediate expressions should be of type unit

» otherwise the OCam/ compiler prints a warning

Correct parsing of sequences: begin ... end

Beware of the ; precedence
if 3>5 then print_string "3,is,greater than 5";

n n

print_string ".";;

— : unit = ()

» use (el; e2; ... en)

> or the more verbose begin el; e2; . en end

if 3>5 then
begin print_string "3,,is greater than 5";

print_string "."

end;;

— unit =)

Iterations

What if we want to print all integers from 1 to 107

let foreach starti endi f =
let rec aux =
function n —> if n <= endi
then (f n; aux (n+1))
else ()
in aux starti;;

val foreach : int —> int —> (int —> 'a) —> unit = <fun>

foreach 1 10 (fun i -> print_int i);;
12345678910~ : unit = ()

The for loop

More concisely

for i=1 to 10 do
print_int 1
done; ;

12345678910~ : unit = ()

for id = el to e2 do e3 done

>

the loop identifier id takes all integer values from el to
e2 in turn, and cannot be otherwise altered

the loop body €3 is evaluated for each value of id
the type of the for loop is unit
the type of the loop body is expected to be unit

otherwise the OCam/ compiler prints a warning

The for loop, alternative

We can also go backwards

for i=10 downto 1 do
print_int 1
done; ;

10987654321 : unit = ()

for id = el to e2 downto e3 done

» the loop identifier id takes all integer values from el
down to e2 in turn

» the loop body e3 is evaluated for each value of id
> the type of the for loop is unit
> the type of the loop body is expected to be unit

» otherwise the OCam/ compiler prints a warning

The while loop

We can also write while loops
while el do e2 done

» the condition el is evaluated

» if true, the loop body e2 is evaluated, and the loop
repeated

» if false, the loop stops

» the type of the while loop is unit

> the type of the loop body is expected to be unit
» otherwise the OCam/ compiler prints a warning

Ignoring values

In some cases, we may really want to use in the body of a loop an expression that has

not a unit type.
To make our intention explicit, and avoid the warning, we can use the ignore function:

ignore;;

— :'a —> unit = <fun>

10

Summary

» Sequences el; e2; ... ; en

v

For loops for id = el to e2 to/downto e3 done

v

While loops while el do e2 done

v

The body of the loops, and the intermediate expressions, should all be of type unit

> and we can use ignore to make sure they are

11

