
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 1 - Sequence 5: Recursion

Recursive Functions

I Functions that are defined by calling themselves on smaller arguments
I Natural on recursively defined data structures (see Week 3)

I Example: fact(n) =
{

1 if n = 1
n ∗ fact(n − 1) if n > 1

2

Recursive Definitions in OCaml

I A priori, the use of f in a definition of f refers to the previous value of f
I The keyword rec changes this, and allows us to define a function by recursion

3

Recursive Definitions in OCaml I

let x = 1;;
val x : int = 1
let x = x+1;;
val x : int = 2
x;;
- : int = 2

let f x = x+1;;
val f : int -> int = <fun>
let f x = f (f x);;
val f : int -> int = <fun>
f 1;;
- : int = 3

4

Recursive Definitions in OCaml II

let fact n = if n <=1 then 1 else n*fact(n-1);;
Characters 37-41:

let fact n = if n <=1 then 1 else n*fact(n-1);;
^^^^

Error: Unbound value fact

let rec fact n = if n <=1 then 1 else n*fact(n-1);;
val fact : int -> int = <fun>

fact 10;;
- : int = 3628800

5

Mutually Recursive Functions

I Generalization of direct recursion
I Several functions are defined by calling each other on smaller arguments
I Natural on mutual recursive data structures
I Example:

I n is even if n = 0, or n > 0 and n − 1 is odd
I n is odd if n = 1, or n > 1 and n − 1 is even

6

Mutually Recursive Definitions in OCaml I
let rec even x = if x=0 then true else odd (x-1);;
Characters 39-42:

let rec even x = if x=0 then true else odd (x-1);;
^^^

Error: Unbound value odd

let rec even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1);;
val even : int -> bool = <fun>
val odd : int -> bool = <fun>

even 17;;
- : bool = false
even 10;;
- : bool = true

7

