Introduction to
Functional Programming in OCaml/

Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 5 - Sequence 1: Getting and handling your Exceptions

-

. 2 i

g e‘“\E P44’ 2

n @ > rd

22 § A% lrrzia — OCamla®
E AN INVENTORS FOR THE DIGITALWORLD

Exceptions and the exn type

OCaml provides exceptions for signalling and handling exceptional conditions.

>

>

>

exceptions are constructors of a special sum type exn
these constructors can have arguments, like all other constructors
new exceptions can be defined at any time

this makes the exn sum type special:
unlike the usual sum types, it can be extended

exceptions cannot be polymorphic

Declaring exceptions

Exceptions are declared using the exception keyword
exception E;;
exception E

They are just constructors:
B

—:exn = E

Raising exceptions

Exceptions are signalled using the raise keyword
raise E;;
exception: E.
When an exception is raised, the computation is immediately stopped.

let _ = raise E in [1;2];;

exception: E.

Let's see a more realistic example.

Taking the head of an empty list |

exception Empty_list;;
exception Empty_list

(* define a head function that uses the exception x)
let head = function
a::r —> a
| [] -> raise Empty_list;;
val head : ’a list -> ’a = <fun>

(x let's test x)

head [’a’;’b’];;

- : char = ’a’

head [J];;

Exception: Empty_list.

Handling exceptions

Exception can be captured, using the try with construct.

try
e
with
pl —> el
| p2 -> e2
I

» ¢ is evaluated

v

if E is raised, match it with the patterns in the with clause

> you can use any pattern of type exn

v

if E matches pattern p;, evaluate expression e;

v

all the e; must have the same type as e

Handling examples |

(* multiplying all values of an integer list %)
(* think of a 1 million element list with a 0 at the end x)

let rec multl = function
0 —>1
| a::rest -> if a = 0 then 0 else a * (multl rest)

val multl : int list -> int = <fun>

Handling examples I

(* use exceptions to return as soon as we see a zero)

exception Zero;;
exception Zero

let multlexc 1 =
let rec aux = function
(7 —>1
| a::rest -> if a = 0 then raise Zero else a * (aux rest)
in
try aux 1 with Zero -> 0;;
val multlexc : int list -> int = <fun>

When things go wrong

Run-time errors

OCaml catches type errors at compile time, but other errors may occur at runtime
» division by zero
» incomplete pattern matching
» out-of-bound access to indexed data structures like arrays

> ..

Capturing errors as exceptions

In OCaml, these errors do not crash the program:
they raise an exception, which you can handle!

Let's see some examples.

Meet the exceptions |

10

(* division by zero x)
3/0;;
Exception: Division_by_zero.

(x out of bound access to mutable data structures x)

let v = [[1;2;31];;

val v : int array = [I|1; 2; 3]]
v.(0);;

- : int = 1

v.(3);;

Exception: Invalid_argument "index jout of bounds".

Meet the exceptions Il

11

(* incomplete pattern matching)

let drop = function

| a::rest -> rest;;
Characters 47-75:

........... function

| a::rest -> rest..

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
val drop : ’a list -> ’a list = <fun>
drop [1;2;3;4;5];;
- : int list = [2; 3; 4; 5]

Meet the exceptions Ili

drop [J;;
Exception: Match_failure ("//toplevel//", 8, 11).

12

Summary

13

Exceptions

>

>

>

Constructors of a special exn sum type.
Declared and raised using exception and raise.
Handled using the try ... with ... construct.

Useful for signalling and handling exceptional conditions,
and for altering the flow of control.

Good to know: raising and handling exceptions is very fast.

