1.1

1.2

CHAPTER

TinyBlog: A Simple Teapot Web
Interface

Previous Week Solution

You can load the solution of the previous week using the following snippet:

Gofer new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
package: 'ConfigurationOfTinyBlog';
load.

#ConfigurationOfTinyBlog asClass loadWeek2Correction

After a loading a package, you shall run the unit tests to ensure that the
loaded code is correctly working. Open the TestRunner (World menu > Test
Runner), find the 'TinyBlog-Tests’ package and run all unit tests of the TB-
BlogTest class by clicking on the 'Run Selected’ button. All tests should be
green. One alternative is to press the green icon on the side of the class TB-
BlogTest.

Open a code browser to look at the code of both classes TBBlog and TBBlogTest.
You can now complete you own implementation if needed. Before continu-

ing, do not forget to commit a new version in your repository on Smalltalkhub
or SS3 if you modified your code.

A Web Interface for TinyBlog with Teapot

This week, we will create a first simple web interface for TinyBlog with Teapot
(http://smalltalkhub.com/#!/~zeroflag/Teapot). We will implement a more com-
plete version with Seaside next week.


http://smalltalkhub.com/#!/~zeroflag/Teapot

1.3

TinyBlog: A Simple Teapot Web Interface

The TBTeapotWebApp Class

Create a new class named TBTeapotWebApp:

Object subclass: #TBTeapotWebApp
instanceVariableNames: 'teapot’
classVariableNames: 'Server'
package: 'TinyBlog-Teapot'

The variable teapot will refer to a little Teapot HTTP server. Here we use

a different implementation of the Singleton Design Pattern by using a class
variable named Server. We use a Singleton to avoid to have two servers lis-
tening to the same port.

Add the instance method initialize to initialize the instance variable
teapot:

TBTeapotWebApp >> initialize
super initialize.
teapot := Teapot configure: {
#port -> 8081.
#debugMode -> true }.

The Home Page

The homePage method defined inside in the "html’ protocol should return the
HTML code of the home page of our web application as a String. Let’s start
with a simple version:

TBTeapotWebApp >> homePage
~ '<html><body><h1>TinyBlog Web App</h1></body></html>"'

Declare Routes

Add a start method to declare to the teapot object the URLs it must answer
to. So far, we only add the route / accessed via a GET Http method:

TBTeapotWebApp >> start
teapot
GET: '/' -> [ self homePage I;
start

Stop the Application
Add also a method stop to stop the application.

TBTeapotWebApp >> stop
teapot stop



1.4

1.5

1.4 Test your Application

[ JON m localhost:8081 ¢ o 0 » [

{ TinyBlog Web App

Figure 1.1 A first page served by our application.

Starting the application

Add two class-side methods start and stop to start and stop the web appli-
cation in the protocol start/stop’. These two methods use the class variable
Server to implement a Singleton.

TBTeapotWebApp class >> start
Server ifNil: [ Server := self new start ]

TBTeapotWebApp class >> stop
Server ifNotNil: [ Server stop. Server := nil ]

Test your Application

Execute the following snippet to start your application:

[TBTeapotWebApp start

In a web browser, try to access the application with this URL: http://localhost:
8081/. You should see the text: "TinyBlog Web App” as in Figure 1.1.

Display the List of All Visible Posts

Modify now the code of the homePage method to display the list of all visible
posts in the current blog. Remember these posts can be obtained with: TB-
Blog current allVisibleBlogPosts. We implement that functionality by
adding three methods and modifying the homePage method.


http://localhost:8081/
http://localhost:8081/

1.6

TinyBlog: A Simple Teapot Web Interface

TBTeapotWebApp >> allPosts
* TBBlog current allVisibleBlogPosts

Since we need to generate a long String that contains the HTML code of the
home page, we decided to use a Stream in the homePage method. We also
factored out the HTML generation of the HTML page header and footer in
two different methods: renderPageHeaderOn: and renderPageFooterOn:.

ETBTeapotWebApp >> homePage
~ String streamContents: [ :s |
self renderPageHeaderOn: s.
s << '<h1>TinyBlog Web App</h1>".
s << '<ul>'.
self allPosts do: [ :aPost |
s << ('<li>', aPost title, '</1i>"') 1].
s << '</ul>'.
self renderPageFooterOn: s.

]

Note that the message << is a different name for the message nextPutAll:
that adds a collection of elements to a stream.

TBTeapotWebApp >> renderPageHeaderOn: aStream
aStream << '<html><body>'

TBTeapotWebApp >> renderPageFooterOn: aStream
aStream << '</body></html>"'

Test your application in a web browser, you should now see a list of post ti-
tles as in Figure 1.2. If this is not the case make sure that your blog contains
some post. You can use the message createDemoPosts to add some generic
blog posts.

[ TBBlog createDemoPosts

Details of a Post

Add a New Web Page

We would like that the following URL http://localhost:8081/post/1 displays the
whole post number 1.

To start, let us think about the worst case and define what should happen in
case of errors. We define the method errorPage.

TBTeapotWebApp >> errorPage
* String streamContents: [ :s |
self renderPageHeaderOn: s.
s << '<p>0ops, an error occurred</p>'.
self renderPageFooterOn: s ]


http://localhost:8081/post/1

1.6 Details of a Post

e0e [im] localhost:8081 [ o 0 » [

TinyBlog Web App

* Welcome in TinyBlog

* Report Pharo Sprint

® Brick on top of Bloc - Preview

o The sad story of unclassified blog posts
o Working with Pharo on the Raspberry Pi

Figure 1.2 Showing post titles.

Teapot supports patterns such as '<id>’ in route definitions. The correspond-
ing value of "<id>’ in the incoming URL is then accessible through the re-
quest object passed as a block parameter. Now we modify the start method
and introduce a new route into the application to display the content of a
post.

TBTeapotWebApp >> start
teapot
GET: '/' -> [ self homePage I;
GET: '/post/<id>' -> [ :request | self pageForPostNumber:
(request at: #id) asNumber 1;
start

We now add a new method named pageForPostNumber: displaying the
whole content of a post:

>TBTeapotWebApp >> pageForPostNumber: aPostNumber
| currentPost |
currentPost := self allPosts at: aPostNumber ifAbsent: [ " self
errorPage ].
String streamContents: [ :s |
self renderPageHeaderOn: s.
s << ('<h1>', currentPost title, '</h1>').
s << ('<h3>', currentPost date mmddyyyy, '</h3>').
s << ('<p> Category: ', currentPost category, '</p>').
s << ('<p>', currentPost text, '</p>').
self renderPageFooterOn: s ]

N

You should now restart the server before testing your application with the
following URL: http://localhost:8081/post/1


http://localhost:8081/post/1

1.7

TinyBlog: A Simple Teapot Web Interface

The parameter of pageForPostNumber: is the integer passed in the URL and
it is used as an index to retrieve the post to display in the collection of posts.
Obviously, this is a fragile solution because if the order of the posts changes
in the collection, a given URL will not display the same post as before.

Add Links to Posts

Modify the homePage method so that post titles in the list will be links to
their own web page.

ETBTeapotWebApp >> homePage

A

String streamContents: [ :s |

self renderPageHeaderOn: s.

s << '<h1>TinyBlog Web App</h1>".

s << '<ul>'.

self allPosts withIndexDo: [ :aPost :index |

s << '<li>';

<< ('<a href="/post/', index asString, '">');
<< aPost title ;
<< '</a></1i>" ].

s << '</ul>'.

self renderPageFooterOn: s.

1

Now, the home page of the application displays a list of clickable post titles
and if you click on a post title, you will see the content of this post.

Possible Extensions
This application is a really simple and pedagogical example through which
you manipulate collections, streams, etc.

You can improve this web application and implement new functionalities
such as:

« adding a return to home page link on a post page,
+ adding a new page that displays the list of all post categories,

+ adding a new page that displays all posts that belong to one specific
category,

« adding CSS styles to make this web application more appealing.



	TinyBlog: A Simple Teapot Web Interface
	Previous Week Solution
	A Web Interface for TinyBlog with Teapot
	The TBTeapotWebApp Class
	The Home Page
	Declare Routes
	Stop the Application
	Starting the application

	Test your Application
	Display the List of All Visible Posts
	Details of a Post
	Add a New Web Page
	Add Links to Posts

	Possible Extensions


