
5. Other Cryptographic Constructions Relying on
Coding Theory

• Code-Based Digital Signatures
• The Courtois-Finiasz-Sendrier (CFS) Construction
• Attacks against the CFS Scheme
• Parallel-CFS
• Stern’s Zero-Knowledge Identification Scheme
• An Efficient Provably Secure One-Way Function
• The Fast Syndrome-Based (FSB) Hash Function

0Matthieu Finiasz CODE-BASED CRYPTOGRAPHY

Requirements for a Cryptographic Hash Function
A cryptographic hash function has the following properties:

• its input can be of arbitrary size
• its output is a hash of fixed size
• from a security point of view, it should be hard to:

• find an input with a given hash (preimage attack)
• find an input with the same hash as a given input (second preimage)
• find two inputs with the same hash (collision attack)

In addition, it should, as much as possible:
• be fast in both software and hardware implementations
• be fast for both small and large inputs
• have a compact description

1

Requirements for a Cryptographic Hash Function
A cryptographic hash function has the following properties:

• its input can be of arbitrary size
• its output is a hash of fixed size
• from a security point of view, it should be hard to:

• find an input with a given hash (preimage attack)
• find an input with the same hash as a given input (second preimage)
• find two inputs with the same hash (collision attack)

In addition, it should, as much as possible:
• be fast in both software and hardware implementations
• be fast for both small and large inputs
• have a compact description

1

Building a Cryptographic Hash Function
Building a function with arbitrary input length is tricky
_ usually, iterate a function with fixed input size on blocks of the input

The Merkle-Damgård Construction

f

m0

IV f

m1

f h

mN || pad

One of the first hash function constructions:
• f is a compression function
• easy to understand, simple security proofs

2

Building a Cryptographic Hash Function
Building a function with arbitrary input length is tricky
_ usually, iterate a function with fixed input size on blocks of the input

The Davies-Meyer Construction

E

m0

IV f

m1

f h

mN || pad

E E

Ideal for compact implementations:
• E is a block cipher
• can reuse the same hardware

2

Building a Cryptographic Hash Function
Building a function with arbitrary input length is tricky
_ usually, iterate a function with fixed input size on blocks of the input

The Sponge Construction

f

m0

c

m1 mN || pad

r

0

0

f f

absorb squeeze out

f

h0

f

h1

• Maximum versatility

2

Overview of the Fast Syndrome-Based Hash Function

Uses the Merkle-Damgård
construction.

Allows simple security analysis:
• properties of the compression function are transferred to the hash function

• preimage resistance
• second preimage resistance
• collision resistance

_ analyse only the compression function

• has some drawbacks, but not so problematic:
_ long message collisions, multi-collisions...

3

Overview of the Fast Syndrome-Based Hash Function

Uses the Merkle-Damgård
construction.

Uses the one-way function
(previous session) with
compression parameters.

se
cu
rit
y

w

Gi
lb
er
t-V

ar
sh
am

ov

expansion
function

compression
function

3

Overview of the Fast Syndrome-Based Hash Function

Uses the Merkle-Damgård
construction.

Uses the one-way function
(previous session) with
compression parameters.

Adds a final compression
function.

f

m0

IV f

m1

f

mN || pad

g h

3

Description of FSB256

Compression function:
• the matrix H is of size r = 1024 by n = 221

• the input of s = 1792 bits is encoded into a regular word of weight w = 128
_ each position is coded on s

w = log n
w = 14 bits

• the output of r = 1024 bits is the XOR of 128 columns of H

Chaining:
• the message to hash is split in blocks of s − r = 768 bits
• a padding is added to get an integer number of blocks

_ includes the message length
• the IV is all 0
• the compression function is iterated on the blocks
• the final output of r = 1024 bits is input to Whirlpool

_ the final hash has 256 bits

4

Description of FSB256

Compression function:
• the matrix H is of size r = 1024 by n = 221

• the input of s = 1792 bits is encoded into a regular word of weight w = 128
_ each position is coded on s

w = log n
w = 14 bits

• the output of r = 1024 bits is the XOR of 128 columns of H

Chaining:
• the message to hash is split in blocks of s − r = 768 bits
• a padding is added to get an integer number of blocks

_ includes the message length
• the IV is all 0
• the compression function is iterated on the blocks
• the final output of r = 1024 bits is input to Whirlpool

_ the final hash has 256 bits

4

Security of the Compression Function
Against (second) preimage:

• solve a regular instance of SD with weight 128 and a 1024 × 221 matrix
• best attack: GBA with complexity 2261 > 2256

Against collision:
• solve a regular instance of SD with weight 256 and a 1024 × 221 matrix
• best attack: ISD with complexity 2153 > 2128

se
cu
rit
y

w

Gi
lb
er
t-V

ar
sh
am

ov

preimage collision
5

Need for a Final Compression Function
A hash function is expected to have the following properties:

• a security of 2
r
2 against collisions for an output of r bits

_ this is the cost of a generic attack using a birthday algorithm
• it should be possible to truncate the output without losing security

This is not the case for the compression function of FSB:
• if w allows compression, GBA with 4 lists is always possible on weight 2w

_ the security is at most 2
r
3 against collisions

• truncating the output directly improves GBA/ISD attacks
_ this is not desirable

Simply add a final compression:
• must be non-linear
• does not have to be collision/preimage resistant

6

Need for a Final Compression Function
A hash function is expected to have the following properties:

• a security of 2
r
2 against collisions for an output of r bits

_ this is the cost of a generic attack using a birthday algorithm
• it should be possible to truncate the output without losing security

This is not the case for the compression function of FSB:
• if w allows compression, GBA with 4 lists is always possible on weight 2w

_ the security is at most 2
r
3 against collisions

• truncating the output directly improves GBA/ISD attacks
_ this is not desirable

Simply add a final compression:
• must be non-linear
• does not have to be collision/preimage resistant

6

Need for a Final Compression Function
A hash function is expected to have the following properties:

• a security of 2
r
2 against collisions for an output of r bits

_ this is the cost of a generic attack using a birthday algorithm
• it should be possible to truncate the output without losing security

This is not the case for the compression function of FSB:
• if w allows compression, GBA with 4 lists is always possible on weight 2w

_ the security is at most 2
r
3 against collisions

• truncating the output directly improves GBA/ISD attacks
_ this is not desirable

Simply add a final compression:
• must be non-linear
• does not have to be collision/preimage resistant

6

Efficiency
Hashing speed:

• each 14 bits of input add a 1024 bit XOR
_ theoretically, could be as low as 10 cycles per byte (a 64 bit XOR per cycle)

• in practice, requires 300 cycles per input byte
_ around 10 MB/s hashing

Size of the description:
• H has a size of 210 × 221 bits, that is 256 MB

_ this is way too much!
• instead a quasi-cyclic matrix is used

_ each 1024 × 1024 block is circulant
• only the first line of the matrix is needed

_ the description is 1024 times smaller: 256 kB

7

Efficiency
Hashing speed:

• each 14 bits of input add a 1024 bit XOR
_ theoretically, could be as low as 10 cycles per byte (a 64 bit XOR per cycle)

• in practice, requires 300 cycles per input byte
_ around 10 MB/s hashing

Size of the description:
• H has a size of 210 × 221 bits, that is 256 MB

_ this is way too much!
• instead a quasi-cyclic matrix is used

_ each 1024 × 1024 block is circulant
• only the first line of the matrix is needed

_ the description is 1024 times smaller: 256 kB

7

5. Other Cryptographic Constructions Relying on
Coding Theory

We have seen several constructions relying on the hardness of Syndrome
Decoding:

• McEliece, Niederreiter
• the CFS signature
• Stern’s identification scheme
• the FSB hash function

Many other applications of coding theory in cryptography:
• secret sharing
• linear diffusion in block ciphers
• fingerprinting and traitor tracing
• private information retrieval

8

