
5. Other Cryptographic Constructions Relying on
Coding Theory

• Code-Based Digital Signatures
• The Courtois-Finiasz-Sendrier (CFS) Construction
• Attacks against the CFS Scheme
• Parallel-CFS
• Stern’s Zero-Knowledge Identification Scheme
• An Efficient Provably Secure One-Way Function
• The Fast Syndrome-Based (FSB) Hash Function
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Stern’s Zero-Knowledge Identification Scheme

Identification Scheme
Allows a prover to prove his identity to a
verifier.

Zero-Knowledge Protocol
Interactive protocol where one proves
the knowledge of something, without
revealing any information about it.
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Stern’s Zero-Knowledge Identification Scheme

Identification Scheme
Allows a prover to prove his identity to a
verifier.

Zero-Knowledge Protocol
Interactive protocol where one proves
the knowledge of something, without
revealing any information about it.

Stern’s Scheme, invented in 1993:
• its security relies on the Syndrome Decoding problem
• it uses a random binary matrix

_ no need to hide a trap
• like other identification schemes, it can be converted

into a signature scheme
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Stern’s Zero-Knowledge Identification Scheme
System parameters:
• A public n × r binary matrix H, a weight w

Key generation:
• Each user picks a secret binary vector e of length n and Hamming weight w
• He computes s = H × e and publishes it

Identification protocol:
• The verifier knows s
• The prover has to prove he knows e such that s = H × e

_ without revealing any information about e
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Stern’s Zero-Knowledge Identification Scheme
Prover Verifier

Pick: y ∈ Fn
2, σ perm. of [1,n]
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Stern’s Zero-Knowledge Identification Scheme
Prover Verifier

Pick: y ∈ Fn
2, σ perm. of [1,n]

Compute: c0 = Hash(σ||H × y)
c1 = Hash(σ(y))
c2 = Hash(σ(y ⊕ e))

c0,c1,c2−−−−−−−−−−−−−→ Store the commitments
b←−−−−−−−−−−−−− Pick: b ∈ {0,1,2}

If b = 2 reveal info for c0 and c1
y ,σ−−−−−−−−−−−−−→ Compute:

c′0 = Hash(σ||H × y)
c′1 = Hash(σ(y))

Accept if: c′0 = c0 and c′1 = c1

In all three cases, the verifier can verify 2 out of the 3 commitments.
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Verification of the Zero-Knowledge Property
When running the protocol, the verifier learns:
• the values of the 3 commitments

_ assuming the hash function is secure, these do not leak any information

• depending on the choice of b, one of the following pairs of values:
• σ(y) and σ(e)
• y ⊕ e and σ
• y and σ
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Security of the Protocol
Again, there are two ways to attack this protocol.

Recovery of the secret:
• similar to decoding attacks on McEliece or signature forgery in CFS
• requires to solve an instance of syndrome decoding

_ a truly random instance, with no trap: both H and e are random

Impersonation attacks:
• an attacker executes the protocol with a verifier

_ tries to give answers the verifier will accept
• impossible to give commitments that can be opened for

all 3 values of b

Without the knowledge of the secret e, the probability of
success is at most 2

3 .
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Impersonation Attack
An attacker can achieve a probability of impersonation of 2

3 by choosing any of
these 3 constructions:

Choice 1:
• Pick y , σ, and e′ of weight w
• Send: c0 = Hash(σ||H × y), c1 = Hash(σ(y)), c2 = Hash(σ(y ⊕ e′))

If b = 0, verify c1 and c2

Send σ(y) and σ(e′)

If b = 1, verify c0 and c2

Problem!

If b = 2, verify c0 and c1

Send y and σ
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Impersonation Attack
An attacker can achieve a probability of impersonation of 2

3 by choosing any of
these 3 constructions:

Choice 1:
• Pick y , σ, and e′ of weight w
• Send: c0 = Hash(σ||H × y), c1 = Hash(σ(y)), c2 = Hash(σ(y ⊕ e′))

Choice 2:
• Pick y ⊕ e′, σ, and e′ of weight w
• Send: c0 = Hash(σ||H × (y ⊕ e′)⊕ s), c1 = Hash(σ(y)), c2 = Hash(σ(y ⊕ e′))

Choice 3:
• Pick y , σ, and e′ of heavy weight, such that H × e′ = s
• Send: c0 = Hash(σ||H × y), c1 = Hash(σ(y)), c2 = Hash(σ(y ⊕ e′))

If b = 0, verify c1 and c2

σ(e′) is too heavy!

If b = 1, verify c0 and c2

Send y ⊕ e′ and σ

If b = 2, verify c0 and c1

Send y and σ
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Reaching a High Security Level
A probability of impersonation of 2

3 is too high :)

The protocol can simply be iterated:
• run the protocol ` times
• if any of the ` proofs fails, abort
• if all ` iterations can be verified, authentication is successful

_ the final probability of impersonation is
(2

3

)`
52 iterations give a probability of less than 1 in a billion.

137 iterations give a probability of 2−80.

_ around 3 000 bits are exchanged at each iteration.
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Conversion to a Signature Scheme
The Fiat-Shamir transform can turn any ZK identification scheme into a signature
scheme.
• choose the document D to sign

• compute the commitments for ` iterations of the protocol
_ note T the “transcript” containing these ` triples (c0, c1, c2)
• compute h = Hash(D||T )
• use the bits of h to obtain ` values of b, tied to D and T
• open the commitments corresponding to these b

_ note S the “transcript” containing the opening values
• the signature of D is the full transcript T ||S
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scheme.
• choose the document D to sign
• compute the commitments for ` iterations of the protocol

_ note T the “transcript” containing these ` triples (c0, c1, c2)
• compute h = Hash(D||T )
• use the bits of h to obtain ` values of b, tied to D and T
• open the commitments corresponding to these b

_ note S the “transcript” containing the opening values
• the signature of D is the full transcript T ||S

The security of the signature is
(2

3

)`
The size of the signature is the full transcript size
_ 50 kB for a security of 280

8



5. Other Cryptographic Constructions Relying on
Coding Theory

• Code-Based Digital Signatures
• The Courtois-Finiasz-Sendrier (CFS) Construction
• Attacks against the CFS Scheme
• Parallel-CFS
• Stern’s Zero-Knowledge Identification Scheme
• An Efficient Provably Secure One-Way Function
• The Fast Syndrome-Based (FSB) Hash Function

Matthieu Finiasz CODE-BASED CRYPTOGRAPHY


