5. Other Cryptographic Constructions Relying on Coding Theory

- Code-Based Digital Signatures
- The Courtois-Finiasz-Sendrier (CFS) Construction
- Attacks against the CFS Scheme
- Parallel-CFS
- Stern's Zero-Knowledge Identification Scheme
- An Efficient Provably Secure One-Way Function
- The Fast Syndrome-Based (FSB) Hash Function

Identification Scheme

Allows a prover to prove his identity to a verifier.

Zero-Knowledge Protocol

Interactive protocol where one proves the knowledge of something, without revealing any information about it.

Identification Scheme

Allows a prover to prove his identity to a verifier.

Zero-Knowledge Protocol

Interactive protocol where one proves the knowledge of something, without revealing any information about it.

Stern's Scheme, invented in 1993:

- its security relies on the Syndrome Decoding problem
- it uses a random binary matrix
 - no need to hide a trap
- like other identification schemes, it can be converted into a signature scheme

System parameters:

• A public $n \times r$ binary matrix H, a weight w

System parameters:

• A public $n \times r$ binary matrix H, a weight w

Key generation:

- Each user picks a secret binary vector *e* of length *n* and Hamming weight *w*
- He computes $s = H \times e$ and publishes it

System parameters:

• A public $n \times r$ binary matrix H, a weight w

Key generation:

- Each user picks a secret binary vector *e* of length *n* and Hamming weight *w*
- He computes $s = H \times e$ and publishes it

Identification protocol:

- The verifier knows s
- The prover has to prove he knows e such that $s = H \times e$
 - → without revealing any information about e

Verifier

Prover Pick: $\mathbf{y} \in F_2^n, \sigma$ perm. of [1, n]

ProverVerifierPick: $y \in F_2^n, \sigma$ perm. of [1, n]Compute: $c_0 = \text{Hash}(\sigma || H \times y)$ $c_1 = \text{Hash}(\sigma(y))$ $c_2 = \text{Hash}(\sigma(y \oplus e))$

ProverVerifierPick: $y \in F_2^n, \sigma$ perm. of [1, n]Compute: $c_0 = \text{Hash}(\sigma || H \times y)$ $c_1 = \text{Hash}(\sigma(y))$ $c_2 = \text{Hash}(\sigma(y \oplus e)) \xrightarrow{c_0, c_1, c_2}$ $c_2 = \text{Hash}(\sigma(y \oplus e)) \xrightarrow{b}$ Store the commitments \leftarrow bbPick: $b \in \{0, 1, 2\}$

Verifier Prover Pick: $\mathbf{y} \in \mathbf{F}_2^n, \boldsymbol{\sigma}$ perm. of [1, n]Compute: $c_0 = \text{Hash}(\sigma || H \times \gamma)$ $C_1 = \text{Hash}(\sigma(v))$ C_0, C_1, C_2 $C_2 = \text{Hash}(\sigma(\mathbf{v} \oplus \mathbf{e})) \rightarrow$ Store the commitments b — Pick: $b \in \{0, 1, 2\}$ $\sigma(\mathbf{y}), \sigma(\mathbf{e})$ If b = 0 reveal info for c_1 and c_2 \rightarrow Compute: $c'_1 = \text{Hash}(\sigma(\mathbf{y}))$ $c'_{2} = \text{Hash}(\sigma(\mathbf{v}) \oplus \sigma(\mathbf{e}))$ Accept if: $c'_1 = c_1$ and $c'_2 = c_2$

Verifier Prover Pick: $\mathbf{y} \in \mathbf{F}_2^n, \boldsymbol{\sigma}$ perm. of [1, n]Compute: $c_0 = \text{Hash}(\sigma || H \times \gamma)$ $C_1 = \text{Hash}(\sigma(v))$ C_0, C_1, C_2 $C_2 = \text{Hash}(\sigma(v \oplus e)) -$ Store the commitments b — Pick: b ∈ {0, 1, 2} **y⊕e**,σ If b = 1 reveal info for c_0 and c_2 Or Compute:
 Or Com $c'_{0} = \text{Hash}(\sigma || (H \times (\mathbf{y} \oplus \mathbf{e})) \oplus \mathbf{s})$ $c'_{\alpha} = \text{Hash}(\sigma(\mathbf{v} \oplus \mathbf{e}))$ Accept if: $c'_0 = c_0$ and $c'_2 = c_2$

Verifier Prover Pick: $\mathbf{y} \in \mathbf{F}_2^n, \boldsymbol{\sigma}$ perm. of [1, n]Compute: $c_0 = \text{Hash}(\sigma || H \times \gamma)$ $C_1 = \text{Hash}(\sigma(v))$ C_0, C_1, C_2 $C_2 = \text{Hash}(\sigma(v \oplus e)) -$ Store the commitments b — Pick: b ∈ {0, 1, 2} **y**,σ If b = 2 reveal info for c_0 and c_1 \rightarrow Compute: $c_0' = \text{Hash}(\sigma || H \times \gamma)$ $c'_1 = \text{Hash}(\sigma(\mathbf{v}))$ Accept if: $c_0' = c_0$ and $c_1' = c_1$

Prover Verifier Pick: $\mathbf{y} \in \mathbf{F}_2^n, \boldsymbol{\sigma}$ perm. of [1, n]Compute: $c_0 = \text{Hash}(\sigma || H \times \gamma)$ $C_1 = \text{Hash}(\sigma(v))$ C_0, C_1, C_2 $C_2 = \text{Hash}(\sigma(\mathbf{v} \oplus \mathbf{e}))$ Store the commitments b - Pick: $b \in \{0, 1, 2\}$ **y**,σ If b = 2 reveal info for c_0 and c_1 \rightarrow Compute: $c_0' = \text{Hash}(\sigma || H \times \gamma)$ $c'_1 = \text{Hash}(\sigma(\mathbf{v}))$ Accept if: $c_0' = c_0$ and $c_1' = c_1$

In all three cases, the verifier can verify 2 out of the 3 commitments.

- the values of the 3 commitments
 - -> assuming the hash function is secure, these do not leak any information

- the values of the 3 commitments
 - -> assuming the hash function is secure, these do not leak any information
- depending on the choice of *b*, one of the following pairs of values:
 - $\sigma(y)$ and $\sigma(e)$
 - $y \oplus e$ and σ
 - y and σ

- y is random, so $\sigma(y)$ gives no information
- $\sigma(e)$ discloses the weight of e, which is always w

- the values of the 3 commitments
 - -> assuming the hash function is secure, these do not leak any information
- depending on the choice of *b*, one of the following pairs of values:
 - $\sigma(y)$ and $\sigma(e)$
 - $y \oplus e$ and σ
 - y and σ

- y is random, so $y \oplus e$ gives no information
- σ is random and gives no information

- the values of the 3 commitments
 - -> assuming the hash function is secure, these do not leak any information
- depending on the choice of *b*, one of the following pairs of values:
 - $\sigma(y)$ and $\sigma(e)$
 - $y \oplus e$ and σ
 - y and σ

- y is random and gives no information
- σ is random and gives no information

Security of the Protocol

Again, there are two ways to attack this protocol.

Recovery of the secret:

- similar to decoding attacks on McEliece or signature forgery in CFS
- requires to solve an instance of syndrome decoding
 - \rightarrow a truly random instance, with no trap: both *H* and *e* are random

Security of the Protocol

Again, there are two ways to attack this protocol.

Recovery of the secret:

- similar to decoding attacks on McEliece or signature forgery in CFS
- requires to solve an instance of syndrome decoding
 - \rightarrow a truly random instance, with no trap: both *H* and *e* are random

Impersonation attacks:

- an attacker executes the protocol with a verifier
 - → tries to give answers the verifier will accept
- impossible to give commitments that can be opened for all 3 values of b

Security of the Protocol

Again, there are two ways to attack this protocol.

Recovery of the secret:

- similar to decoding attacks on McEliece or signature forgery in CFS
- requires to solve an instance of syndrome decoding
 - \rightarrow a truly random instance, with no trap: both *H* and *e* are random

Impersonation attacks:

- an attacker executes the protocol with a verifier
 - → tries to give answers the verifier will accept
- impossible to give commitments that can be opened for all 3 values of b

Without the knowledge of the secret *e*, the probability of success is at most $\frac{2}{3}$.

Impersonation Attack

An attacker can achieve a probability of impersonation of $\frac{2}{3}$ by choosing any of these 3 constructions:

Choice 1:

- Pick y, σ , and e' of weight w
- Send: $c_0 = \text{Hash}(\sigma || H \times y), c_1 = \text{Hash}(\sigma(y)), c_2 = \text{Hash}(\sigma(y \oplus e'))$

If $b = 0$, verify c_1 and c_2	If $b = 1$, verify c_0 and c_2
Send $\sigma(\mathbf{y})$ and $\sigma(\mathbf{e}')$	Problem!

If b = 2, verify c_0 and c_1 Send y and σ

Impersonation Attack

An attacker can achieve a probability of impersonation of $\frac{2}{3}$ by choosing any of these 3 constructions:

Choice 1:

- Pick y, σ , and e' of weight w
- Send: $c_0 = \text{Hash}(\sigma || H \times y)$, $c_1 = \text{Hash}(\sigma(y))$, $c_2 = \text{Hash}(\sigma(y \oplus e'))$ Choice 2:
 - Pick $y \oplus e'$, σ , and e' of weight w
 - Send: $c_0 = \text{Hash}(\sigma || H \times (y \oplus e') \oplus s), c_1 = \text{Hash}(\sigma(y)), c_2 = \text{Hash}(\sigma(y \oplus e'))$

If b = 0, verify c_1 and c_2 Send $\sigma(y)$ and $\sigma(e')$

If b = 1, verify c_0 and c_2 Send $y \oplus e'$ and σ

If b = 2, verify c_0 and c_1 Problem!

Impersonation Attack

An attacker can achieve a probability of impersonation of $\frac{2}{3}$ by choosing any of these 3 constructions:

Choice 1:

• Pick v, σ , and e' of weight w

• Send: $c_0 = \text{Hash}(\sigma || H \times y), c_1 = \text{Hash}(\sigma(y)), c_2 = \text{Hash}(\sigma(y \oplus e'))$ Choice 2:

• Pick $\mathbf{y} \oplus \mathbf{e}', \sigma$, and \mathbf{e}' of weight w

• Send: $c_0 = \text{Hash}(\sigma || H \times (y \oplus e') \oplus s), c_1 = \text{Hash}(\sigma(y)), c_2 = \text{Hash}(\sigma(y \oplus e'))$ Choice 3:

- Pick y, σ , and e' of heavy weight, such that $H \times e' = s$
- Send: $c_0 = \text{Hash}(\sigma || H \times y), c_1 = \text{Hash}(\sigma(y)), c_2 = \text{Hash}(\sigma(y \oplus e'))$

 $\sigma(e')$ is too heavy!

If b = 0, verify c_1 and $c_2 = 1$ if b = 1, verify c_0 and $c_2 = 1$ Send $y \oplus e'$ and σ

If b = 2, verify c_0 and c_1 Send y and σ

Reaching a High Security Level

A probability of impersonation of $\frac{2}{3}$ is too high :)

The protocol can simply be iterated:

- run the protocol ℓ times
- if any of the ℓ proofs fails, abort
- if all ℓ iterations can be verified, authentication is successful

 \rightarrow the final probability of impersonation is $\left(\frac{2}{3}\right)^{\ell}$

52 iterations give a probability of less than 1 in a billion. 137 iterations give a probability of 2^{-80} .

→ around 3 000 bits are exchanged at each iteration.

The Fiat-Shamir transform can turn any ZK identification scheme into a signature scheme.

• choose the document *D* to sign

The Fiat-Shamir transform can turn any ZK identification scheme into a signature scheme.

- choose the document *D* to sign
- compute the commitments for ℓ iterations of the protocol

 \rightarrow note *T* the "transcript" containing these ℓ triples (c_0, c_1, c_2)

The Fiat-Shamir transform can turn any ZK identification scheme into a signature scheme.

- choose the document *D* to sign
- compute the commitments for ℓ iterations of the protocol
 - \rightarrow note *T* the "transcript" containing these ℓ triples (c_0, c_1, c_2)
- compute h = Hash(D||T)

The Fiat-Shamir transform can turn any ZK identification scheme into a signature scheme.

- choose the document D to sign
- compute the commitments for ℓ iterations of the protocol
 → note T the "transcript" containing these ℓ triples (c₀, c₁, c₂)
- compute h = Hash(D||T)
- use the bits of *h* to obtain ℓ values of *b*, tied to *D* and *T*

The Fiat-Shamir transform can turn any ZK identification scheme into a signature scheme.

- choose the document D to sign
- compute the commitments for ℓ iterations of the protocol \rightarrow note T the "transcript" containing these ℓ triples (c_0, c_1, c_2)
- compute h = Hash(D||T)
- use the bits of h to obtain ℓ values of b, tied to D and T
- open the commitments corresponding to these b
 - \rightarrow note S the "transcript" containing the opening values

The Fiat-Shamir transform can turn any ZK identification scheme into a signature scheme.

- choose the document D to sign
- compute the commitments for ℓ iterations of the protocol
 → note T the "transcript" containing these ℓ triples (c₀, c₁, c₂)
- compute h = Hash(D||T)
- use the bits of h to obtain ℓ values of b, tied to D and T
- open the commitments corresponding to these b
 - \rightarrow note *S* the "transcript" containing the opening values
- the signature of D is the full transcript T||S

The security of the signature is $\left(\frac{2}{3}\right)^{\ell}$ The size of the signature is the full transcript size $\rightarrow 50 \text{ kB}$ for a security of 2^{80}

5. Other Cryptographic Constructions Relying on Coding Theory

- Code-Based Digital Signatures
- The Courtois-Finiasz-Sendrier (CFS) Construction
- Attacks against the CFS Scheme
- Parallel-CFS
- Stern's Zero-Knowledge Identification Scheme
- An Efficient Provably Secure One-Way Function
- The Fast Syndrome-Based (FSB) Hash Function