5. Other Cryptographic Constructions Relying on Coding Theory

- Code-Based Digital Signatures
- The Courtois-Finiasz-Sendrier (CFS) Construction
- Attacks against the CFS Scheme
- Parallel-CFS
- Stern's Zero-Knowledge Identification Scheme
- An Efficient Provably Secure One-Way Function
- The Fast Syndrome-Based (FSB) Hash Function

What happens if you use 2 hash functions h and h' to compute 2 different CFS signatures?

What happens if you use 2 hash functions h and h' to compute 2 different CFS signatures?

For the signer:

- signature takes twice more computation
- the signature is twice longer

What happens if you use 2 hash functions h and h' to compute 2 different CFS signatures?

For the signer:

- signature takes twice more computation
- the signature is twice longer

For the attacker:

• he has to forge 2 signatures

What happens if you use 2 hash functions h and h' to compute 2 different CFS signatures?

For the signer:

- signature takes twice more computation
- the signature is twice longer

For the attacker:

• he has to forge 2 signatures

Well, things are a little more complicated than that...

Start from a set of *N* documents:

• compute their hashes *h_i* to build a list

Start from a set of *N* documents:

- compute their hashes *h_i* to build a list
- when $N = 2^{\frac{mt}{3}}$, one solution is found

Then, move on to the second hash function h':

- problem: there is only one target syndrome left
 - -> both signatures must be for the same document

To chain one out of many attacks:

• build a larger set of syndromes

To chain one out of many attacks:

- build a larger set of syndromes
- find a (large) set of solutions

To chain one out of many attacks:

- build a larger set of syndromes
- find a (large) set of solutions
- use this set to find a "double" solution

Parallel-CFS Requires Complete Decoding

A similar problem happens to the legitimate signer when using counters.

A simple signing strategy would be to:

- pick a document *D* to sign
- use hash function *h* to compute a signature
 - \rightarrow this first signature uses a counter value *i*
- then, using h', compute a second signature, with counter value i'

Parallel-CFS Requires Complete Decoding

A similar problem happens to the legitimate signer when using counters.

A simple signing strategy would be to:

- pick a document *D* to sign
- use hash function *h* to compute a signature
 - \rightarrow this first signature uses a counter value *i*
- then, using h', compute a second signature, with counter value i'

Problem: the attacker can do the same

- pick a document *D* to sign
- build a list of syndromes using *h* and different counters
 → forge a first signature
- forge a second signature, using h' and a list of counters

Parallel-CFS Requires Complete Decoding

A similar problem happens to the legitimate signer when using counters.

A simple signing strategy would be to:

- pick a document *D* to sign
- use hash function *h* to compute a signature
 - \rightarrow this first signature uses a counter value *i*
- then, using h', compute a second signature, with counter value i'

For the Parallel-CFS construction to work:

- the input of both hash functions should be the same
- both signatures should use the same counter value
- both syndromes are decodable with probability $\left(\frac{1}{H}\right)^2$

The complete decoding version is much more efficient!

With the complete decoding version of CFS, the size of lists L_0 , L_1 , and L_2 can be such that $|L_0| \times |L_1| \times |L_2| = 2^{mt}$.

With the complete decoding version of CFS, the size of lists L_0 , L_1 , and L_2 can be such that $|L_0| \times |L_1| \times |L_2| = 2^{mt}$.

Say the attacker wants to forge 2^c signatures with *h*, he can pick:

•
$$|L_S| = 2^{\frac{mt+2c}{3}}$$
, $|L_0| = |L_1| = 2^{\frac{mt+c/2}{3}}$, and $|L_2| = 2^{\frac{mt-c}{3}}$

- merge the lists pairwise, zeroing $\frac{mt-c}{3}$ bits
- obtain 2^c solutions on average

 \rightarrow the cost of this step is $2^{\frac{mt+2c}{3}}$

With the complete decoding version of CFS, the size of lists L_0 , L_1 , and L_2 can be such that $|L_0| \times |L_1| \times |L_2| = 2^{mt}$.

Say the attacker wants to forge 2^c signatures with *h*, he can pick:

•
$$|L_S| = 2^{\frac{mt+2c}{3}}$$
, $|L_0| = |L_1| = 2^{\frac{mt+c/2}{3}}$, and $|L_2| = 2^{\frac{mt-c}{3}}$

- merge the lists pairwise, zeroing $\frac{mt-c}{3}$ bits
- obtain 2^c solutions on average

 \rightarrow the cost of this step is $2^{\frac{mt+2c}{3}}$

Then, to forge **1** signature with h', the attacker uses:

•
$$|L_S| = 2^c$$
, $|L_0| = |L_1| = 2^{\frac{mt+c}{4}}$, and $|L_2| = 2^{\frac{mt-c}{2}}$

- merge the lists pairwise, zeroing *c* bits
- obtain 1 solution on average

 \rightarrow the cost of this step is $2^{\frac{mt-c}{2}}$

Security of Parallel-CFS with 2 Signatures

The optimal choice of *c* is when $\frac{mt+2c}{3} = \frac{mt-c}{2}$, that is $c = \frac{1}{7}mt$.

This gives a total chained GBA attack cost of $2^{\frac{3}{7}mt}$.

Security of Parallel-CFS with 2 Signatures

The optimal choice of *c* is when $\frac{mt+2c}{3} = \frac{mt-c}{2}$, that is $c = \frac{1}{7}mt$.

This gives a total chained GBA attack cost of $2^{\frac{3}{7}mt}$.

Security of Parallel-CFS with i Signatures

When using *i* signatures in parallel, the cost of the attacks becomes $2^{\frac{2^{i-1}}{2^{i+1}-1}mt}$.

It can be made very close to $2^{\frac{mt}{2}}$: $\frac{1}{3}, \frac{3}{7}, \frac{7}{15}, \dots$

Parallel-CFS

What happens if you use 2 hash functions h and h' to compute 2 different CFS signatures?

Parallel-CFS

What happens if you use 2 hash functions h and h' to compute 2 different CFS signatures?

For the signer:

- signature takes twice more computation
- the signature is twice longer

Parallel-CFS

What happens if you use 2 hash functions h and h' to compute 2 different CFS signatures?

For the signer:

- signature takes twice more computation
- the signature is twice longer

For the attacker:

• the cost of forgery is significantly increased!

Parallel-CFS allows to use smaller, more efficient, parameters than the original CFS.

5. Other Cryptographic Constructions Relying on Coding Theory

- Code-Based Digital Signatures
- The Courtois-Finiasz-Sendrier (CFS) Construction
- Attacks against the CFS Scheme
- Parallel-CFS
- Stern's Zero-Knowledge Identification Scheme
- An Efficient Provably Secure One-Way Function
- The Fast Syndrome-Based (FSB) Hash Function