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GRS codes for the McEliece scheme

‚ Generalized Reed-Solomon codes

H. Niederreiter.
Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159 � 166, 1986.

Parameters Key size Security level
[256, 128, 129]256 67 ko 295

7Attack against this proposal:

V. M. Sidelnikov and S. O. Shestakov.
On the insecurity of cryptosystems based on generalized Reed-Solomon codes.
Discrete Math. Appl., 2:439�444, 1992.
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Filtration Attack for GRS codes

Suppose that we know:

Ck = GRSk (a,b) and Ck�1 = GRSk�1(a,b)

Proposition: Assume that 2k � 1  n � 2

Ck�2 = GRSk�2(a,b) is the solution space of the following problem

c 2 Ck�1 and c ⇤ Ck ✓ (Ck�1)
2

In this way we build the following filtration

GRSk (a,b) ◆ GRSk�1(a,b) ◆ GRSk�2(a,b) ◆ · · · ◆ GRS1(a,b)

Note that: GRS1(a,b) =
�
↵b | ↵ 2 F⇤

q
 

So we get the column multiplier b. If b is known, a can be
computed by solving a linear system.
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Filtration Attack for GRS codes

1. Suppose that Ck = GRSk (a,b) is known.

2. Shortening at the first position (i.e. S1( Ck )) we get C0
k�1 = GRSk�1(a

0,b0)

where

a

0 = (a2, . . . , an) and b

0 = (b0
2, . . . , b

0
n) with b0

j = bj(aj � a1)

3. We can build the filtration:

GRSk (a,b) ◆ GRSk�1(a
0,b0) ◆ GRSk�2(a

0,b0) ◆ GRS1(a
0,b0)

4. Se we get the column multiplier b

0 and the support a

0.
5. Repeat the process shortening in another position to

recover a completely.
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Filtration Attack for GRS codes

Public Key: Kpub =

(
a generator matrix of Cpub = GRSk (a,b)

and t =
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Another (Filtration) Attack - Retrieving an ECP

Proposition 1:

Let C = GRSk(c,d) =) C? = GRSn�k(c,d?)

Then, A = GRSt+1(c, 1) and B = GRSt(c,d?)

is a t-ECP for C over Fq

Proposition 2: To compute a t-ECP for C = GRSk(a,b) it suffise to
compute a code of type B = GRSt(c,d?)

If we know C = GRSk(c,d) and B = GRSt(c,d?)

Then, A = GRSt+1(a, 1) =
⇣
B ⇤ C

⌘?
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4. Note that: Correcting an error in the first position is not a difficult

problem.
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