Code-Based Cryptography

- 1. Error-Correcting Codes and Cryptography
- 2. McEliece Cryptosystem
- 3. Message Attacks (ISD)
- 4. Key Attacks
- 5. Other Cryptographic Constructions Relying on Coding Theory

4. Key Attacks

- 1. Introduction
- 2. Support Splitting Algorithm
- 3. Distinguisher for GRS codes
- 4. Attack against subcodes of GRS codes
- 5. Error-Correcting Pairs
- 6. Attack against GRS codes
- 7. Attack against Reed-Muller codes
- 8. Attack against Algebraic Geometry codes
- 9. Goppa codes still resist

The generator matrix of a Goppa code looks random.

The generator matrix of a Goppa code looks random.

Goppa Code Distinguishing (GCD) problem	Difficult Problem
INPUT: A matrix $G \in \mathbb{F}_2^{k imes n}$	
OUTPUT: Is $G \in \mathcal{K}_{Goppa}$?	

The generator matrix of a Goppa code looks random.

Difficult

Problem

Goppa Code Distinguishing (GCD) problem

```
INPUT: A matrix G \in \mathbb{F}_2^{k \times n}
OUTPUT: Is G \in \mathcal{K}_{\text{Goppa}}?
```

- 1. There exists an efficient distinguisher for high-rate codes.

J. . Faugère, V. Gauthier-Umana, A. Otmani, L. Perret and J. P. Tillich

A Distinguisher for High-Rate McEliece Cryptosystems. IEEE Trans. Inf. Theory. 59(10), pp. 6830-6844, 2013.

The generator matrix of a Goppa code looks random.

Difficult

Problem

Goppa Code Distinguishing (GCD) problem

INPUT: A matrix $G \in \mathbb{F}_2^{k \times n}$ **OUTPUT:** Is $G \in \mathcal{K}_{\text{Goppa}}$?

- 1. There exists an efficient distinguisher for high-rate codes.
 - J. . Faugère, V. Gauthier-Umana, A. Otmani, L. Perret and J. P. Tillich

A Distinguisher for High-Rate McEliece Cryptosystems. IEEE Trans. Inf. Theory. 59(10), pp. 6830-6844, 2013.

2. **General case:** best-known attacks are based on the *support splitting algorithm* and have **exponential runtime**.

P. Loidreau, N. Sendrier

Weak keys in McEliece public-key cryptosystem.

Distinguisher - Square Code - GRS codes

1. If C is a **random** linear code of length *n*, with high probability:

$$K(\mathcal{C}^2) = \min\left\{\binom{K(\mathcal{C})+1}{2}, n\right\}$$

2. If C is a **GRS** code

$$K(\mathcal{C}^2) = \min \left\{ 2K(\mathcal{C}) - 1, n \right\}$$

I. Márquez-Corbella, E. Martínez-Moro and R. Pellikaan.

The non-gap sequence of a subcode of a generalized Reed-Solomon code. Designs, Codes and Cryptography, volume 66, Issue 1-3, 317-333, 2013.

C. Wieschebrink.

Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes. PQCrypto 2010, LNCS, volume 6061, 61-72, 2010.

Distinguisher - Square Code - Alternant codes

Proposition:

- → $\mathbf{a} \in \mathbb{F}_{q^m}^n$ with $\mathbf{a}_i \neq \mathbf{a}_j$ for all $i \neq j$
- → \mathbf{b}_1 and \mathbf{b}_2 *n*-tuples of nonzero elements of \mathbb{F}_{q^m}

Then, there exists $\mathbf{b}_3 \in \mathbb{F}_{q^m}^n$ such that:

 $\operatorname{Alt}_r(\mathbf{a}, \mathbf{b}_1) * \operatorname{Alt}_s(\mathbf{a}, \mathbf{b}_2) \subseteq \operatorname{Alt}_{r+s-n+1}(\mathbf{a}, \mathbf{b}_3)$

Distinguisher - Square Code - Alternant codes

Proposition:

- → $\mathbf{a} \in \mathbb{F}_{q^m}^n$ with $a_i \neq a_j$ for all $i \neq j$
- → \mathbf{b}_1 and \mathbf{b}_2 *n*-tuples of nonzero elements of \mathbb{F}_{q^m}

Then, there exists $\mathbf{b}_3 \in \mathbb{F}_{q^m}^n$ such that:

 $\operatorname{Alt}_r(\mathbf{a}, \mathbf{b}_1) * \operatorname{Alt}_s(\mathbf{a}, \mathbf{b}_2) \subseteq \operatorname{Alt}_{r+s-n+1}(\mathbf{a}, \mathbf{b}_3)$

Proof: Recall that $\operatorname{Alt}_r(\mathbf{a}, \mathbf{b}) \subseteq \operatorname{GRS}_r(\mathbf{a}, \mathbf{b}) = \operatorname{GRS}_{n-k}(\mathbf{a}, \mathbf{b}^{\perp})$ Let: $\mathbf{c}_1 \in \operatorname{Alt}_r(\mathbf{a}, \mathbf{b}_1) \implies \exists f \in \mathbb{F}_q[X]_{< n-s}$ such that $\mathbf{c}_1 = \mathbf{b}_1^{\perp} * f(\mathbf{a})$ $\mathbf{c}_2 \in \operatorname{Alt}_r(\mathbf{a}, \mathbf{b}_2) \implies \exists g \in \mathbb{F}_q[X]_{< n-r}$ such that $\mathbf{c}_2 = \mathbf{b}_2^{\perp} * g(\mathbf{a})$ $\mathbf{c}_1 * \mathbf{c}_2 = \mathbf{b}_1^{\perp} \mathbf{b}_2^{\perp} * (fg)(\mathbf{a})$ with $\operatorname{deg}(fg) < 2n - (s+r) - 1$ Thus $\mathbf{c}_1 * \mathbf{c}_2 \in \operatorname{GRS}_{2n-(s+r)-1}(\mathbf{a}, \mathbf{b}_3^{\perp}) \cap \mathbb{F}_q^n = \operatorname{Alt}_{s+r-n+1}(\mathbf{a}, \mathbf{b}_3^{\perp})$ Distinguisher - Square Code - Alternant codes Thus, $(Alt_r(\mathbf{a}, \mathbf{b}))^{(2)} \subseteq GRS_{2(n-r)-1}(\mathbf{a}, \mathbf{b}^{\perp})$

To distinguish we need:

$$2(n-r) < n \Longrightarrow r > \frac{n}{2}$$

However recall that

$$\dim (\operatorname{Alt}_r(\mathbf{a}, \mathbf{b})) = n - rm \ge 0 \Longrightarrow r < \frac{n}{m} \le \frac{n}{2}$$
 for all $m \ge 1$

Distinguisher for Wild Goppa codes for m = 2The square code of a shortened **wild Goppa code** of extension degree 2 has a **abnormal dimension**.

A. Couvreur, A. Otmani and J.P. Tillich Polynomial Time Attack on Wild McEliece Over Quadratic Extensions. EUROCRYPT 2014, 17–39.

4

Recent results against Wild Goppa codes

1. Wild Goppa code with m = 2

A. Couvreur, A. Otmani and J.P. Tillich

Polynomial Time Attack on Wild McEliece Over Quadratic Extensions. EUROCRYPT 2014, 17–39.

2. Some special cases of Wild McEliece Incognito.

J.C. Faugère, L. Perret and F. Portzamparc

Algebraic Attack against Variants of McEliece with Goppa Polynomial of a Special Form. Asiacrypt 2014, LNCS, vol 8873, 21-41. 2014.

Code-Based Cryptography

- 1. Error-Correcting Codes and Cryptography
- 2. McEliece Cryptosystem
- 3. Message Attacks (ISD)
- 4. Key Attacks
- 5. Other Cryptographic Constructions Relying on Coding Theory