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Algebraic Geometry (AG) codes

‹ An Algebraic Geometry (AG) code is defined by a triplet
✓

X , P , E

◆

X is an algebraic curve
of genus g over the finite
field F

q

P = (P1, . . . ,Pn

)

is an n-tuple of distinct
F

q

-rational points of X

E is an F
q

-divisor of X
such that P

i

/2 supp(E)

Algebraic Geometry (AG) codes

The AG code associated to the triplet (X ,P,E) is

C
L

(X ,P,E) = {evP(f ) = (f (P1), . . . , f (Pn

)) | f 2 L(E)}

1
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Algebraic Geometry (AG) codes

AG codes are "almost" optimal codes

Let C = C
L

(X ,P,E). Then,

d(C) � n � K (C) + 1�g

where g is the genus of X

The dual of an AG code is an AG code

C
L

(X ,P,E)? = C
L

(X ,P,E?)

2
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AG codes for the McEliece scheme

‚ Algebraic-Geometry codes

H. Janwa and O. Moreno.
McEliece public crypto system using algebraic-geometric codes.
Designs, Codes and Cryptography, 1996.

Parameters Key size Security level
[171, 109, 61]128 16 ko 266

7Attack against this proposal:

C. Faure and L. Minder.
Cryptanalysis of the McEliece cryptosystem over hyperelliptic codes.
Proceedings 11th Int. Workshop on Algebraic and Combinatorial Coding Theory, 2008.

A. Couvreur, I. Márquez-Corbella and R. Pellikaan.
A Polynomial Time Attack against Algebraic Geometry Code Based Public Key Cryptosystems.
IEEE Information Theory, ISIT 2014, 1446-1450, 2014.
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GRS codes are AG codes

‹ Consider the (AG) code defined by the triplet
✓

X , P , E

◆

Consider the projective
curve X = P1 given by
z = 0

P = (P1, . . . ,Pn

)

where P

j

= (a
j

: 1) for all
j = 1, . . . , n

E = (k � 1)P1

with P1 = (1 : 0)

A basis for L(E) is given by
⇢

1,
x

y

,
x

2

y

2 , . . . ,
x

k�1

y

k�1

�

Generator matrix
for C

L

(X ,P,E)

0

BBB@

1 1 . . . 1
a1 a2 . . . a

n

...
... . . . ...

a

k�1
1 a

k�1
2 . . . a

k�1
n

1

CCCA
Generator matrix

for GRS
k

(a, 1)
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Filtration Attack for GRS codes - Retrieving an ECP

Suppose that we know:

C
k

= GRS
k

(a,b) and C
k�1 = GRS

k�1(a,b)

Proposition: Assume that 2k � 1  n � 2

C
k�2 = GRS

k�2(a,b) is the solution space of the following problem

c 2 C
k�1 and c ⇤ C

k

✓ (C
k�1)

2

In this way we build a filtration

GRS
k

(a,b) ◆ GRS
k�1(a,b) ◆ GRS

k�2(a,b) ◆ · · ·
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Filtration Attack for GRS codes - Retrieving an ECP

Proposition 1:

Let C = GRS
k

(c,d) =) C? = GRS
n�k

(c,d?)

Then, A = GRS
t+1(c, 1) and B = GRS

t

(c,d?)

is a t-ECP for C over F
q

Proposition 2: To compute a t-ECP for C = GRS
k

(a,b) it suffise to
compute a code of type B = GRS

t

(c,d?)

If we know C = GRS
k

(c,d) and B = GRS
t

(c,d?)

Then, A = GRS
t+1(a, 1) =

⇣
B ⇤ C

⌘?
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Filtration Attack for GRS codes - Retrieving an ECP

Public Key: Kpub =

8
<

:

a generator matrix of Cpub = GRS
k

(a,b)

and t =

�
d(C)� 1

2

⌫

The Algorithm: Assume that 2k � 1  n � 2

1. Determine the codes

C?
pub

= GRS2t

(a,b?) and S1(C?
pub

) = GRS2t�1(a
0,⇠ b

?)

2. Build the filtration:

GRS2t

(a,b)| {z }
C?

pub

◆ GRS2t�1(a
0,⇠ b

?)| {z }
S1(C?

pub

)

◆ . . . ◆ GRS
t

(a0,⇠ b

?)| {z }
B

3. Return (A,B) which is an ECP for S1(C) where: A = (B ⇤ S1(C))?
4. Note that: Correcting an error in the first position is not a difficult

problem.

7
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Filtration Attack for AG codes - Retrieving an ECP

Suppose that we know:

C0 = C
L

(X ,P,E) and C1 = C
L

(X ,P,E � P)

Proposition: Assume that

n

2
� 2 � deg(E)

C2 = C
L

(X ,P,E � 2P) is the solution space of the following problem

c 2 C1 and c ⇤ C0 ✓ (C1)
2

In this way we build a filtration

C
L

(X ,P,E)| {z }
C0

◆ C
L

(X ,P,E � P)| {z }
C1

◆ C
L

(X ,P,E � 2P)| {z }
C2

◆ · · ·

8
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Filtration Attack for AG codes - Retrieving an ECP

Proposition 1: [Pellikaan 1992]

Let C = C
L

(X ,P ,E)?

Then, A = C
L

(X ,P ,F ) and B = C
L

(X ,P ,E � F ) with

deg(E) > deg(F ) = t + g is a t-ECP for C

Proposition 2: To compute a t-ECP for C = C
L

(X ,P ,E) it suffise to
compute a code of type B = C

L

(X ,P ,E � (t + g)P)

If we know
C = C

L

(X ,P ,E)? and B = C
L

(X ,P ,E � (t + g)P)

Let, A =
⇣
B ⇤ C

⌘?
. Then the pair ( A , B ) is a t-ECP for C
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Filtration Attack for AG codes - Retrieving an ECP

Public Key: Kpub =

8
<

:

a generator matrix of Cpub = C
L

(X ,P,E)?

and t =

�
d(C)� g � 1

2

⌫

The Algorithm: Assume that
n

2
� 1 � deg(E)

1. Determine the codes

C0 = C
L

(X ,P,E) = C?
pub

and C1 = C
L

(X ,P,E � P1)

Note that C1 is the set of codewords of C0 which are zero at position P1
2. Build the filtration:

C
L

(X ,P,E)| {z }
C?

pub

=C0

◆ C
L

(X ,P,E � P1)| {z }
C1

◆ . . . ◆ C
L

(X ,P,E � (t + g)P1)| {z }
C

t+g

3. Return (A,B) which is an ECP for C where:

B = C
t+g

and A = (B ⇤ C)?
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4. Key Attacks

1. Introduction
2. Support Splitting Algorithm
3. Distinguisher for GRS codes
4. Attack against subcodes of GRS codes
5. Error-Correcting Pairs
6. Attack against GRS codes
7. Attack against Reed-Muller codes
8. Attack against Algebraic Geometry codes
9. Goppa codes still resist
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