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Let C = GRSk(c,d) — C* = GRS, _«(c,d")

Consider the codes 4 = GRS;,¢(c,d*) and B = GRS;(c,1)

/s:ent codeword
/->y = el + e(-\

received word error vector

Define:

Ky:{ae A |(y,axb)=0,forallbe B}
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Let a € Ky such thata # 0.
If there have been no more than t errors (i.e. wy(e) < t), then e is a solution of:

(y,axb)=(e,axb) forallbe B with e # 0 forall j € supp(a)

____________________________________________________________________

YES, since
d(A) + d(C) >n

............................

Is the solution unique? ;

Suppose that e and e, are solutions of the above system. Then,
; C supp(a)
ei,axb) = (ey,axb) with supp(er) supp\@)
<1 e > { supp(ez) C supp(a)
Then ey — e, € C, but
wh(e1 —e2) < n— |supp(a)| < d(C) -

which contradicts the minimality of d(C).
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Error-correcting pairs (ECP)

e GRS code are the prime examples of codes that have a t-ECP.

e Let D be a code that has (A, B) as t-ECP and suppose that C C D. Then
(A, B) is also a t-ECP for C.

In particular subcodes of GRS codes have a {-ECP
1. Alternant codes
2. Goppa codes

e AG codes also have a t-ECP
e ECP for cyclic codes were investigated by Duursma and Kétter.

@ |. Duursma

Decoding codes from curves and cyclic codes.
Ph.D thesis, Eindhoven University of Technology (1993)
a |. Duursma, R. Kétter.

Error-locating pairs for cyclic codes.
IEEE Trans. Inform. Theory, Vol.40, 1108-1121 (1994)
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Error-correcting pairs (ECP)
Let:

= Abe an [n, K(A)]qm code
- K de. and
¢ be an [n, K(C)]q code = Bbe an [n, K(B)]q» code

(A, B) is a t-ECP for C if the following properties hold:

E.1 (AxB) LC.
E.2 K(A) > t. An [n, K]q codg yvhich has a t-ECP.over
E3 d(BY) >t Fgm has an efficient decoding algorithm.
E.4 d(A)+d(C) > n.
[ R pelikaan Bl Koter. , ,
On decoding by error location and dependent sets of error ?otéf;lsﬂed description of an error locating procedure for linear
g?:g’:gsiwam“ 106-107: 369-381 (1992). In Pro;:eedings of Algebraic and Combinatorial Coding Theory,

113-117. Voneshta Voda (1992).
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Error-correcting pairs (ECP)

Let (A, B) be a t-ECP forC sent codeword

y =c¢c+ e withwy(e)<t

=
received word error vector

1. There exists a € A, a # 0 such that
(y,axb)=0forallbe B

2. For every solution a € A of (1) we have that:

axe=20

3. Since d(A) + d(C) > n. Then, e is the unique solution of:

(e,axb) =0withexa=0forallbe B
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