Code-Based Cryptography

- 1. Error-Correcting Codes and Cryptography
- 2. McEliece Cryptosystem
- 3. Message Attacks (ISD)
- 4. Key Attacks
- 5. Other Cryptographic Constructions Relying on Coding Theory

4. Key Attacks

- 1. Introduction
- 2. Support Splitting Algorithm
- 3. Distinguisher for GRS codes
- 4. Attack against subcodes of GRS codes
- 5. Error-Correcting Pairs
- 6. Attack against GRS codes
- 7. Attack against Reed-Muller codes
- 8. Attack against Algebraic Geometry codes
- 9. Goppa codes still resist

4. Key Attacks

- 1. Introduction
- 2. Support Splitting Algorithm
- 3. Distinguisher for GRS codes
- 4. Attack against subcodes of GRS codes
- 5. Error-Correcting Pairs
- 6. Attack against GRS codes
- 7. Attack against Reed-Muller codes
- 8. Attack against Algebraic Geometry codes
- 9. Goppa codes still resist

Let
$$\mathcal{C} = \mathrm{GRS}_k(\mathbf{c}, \mathbf{d}) \implies \mathcal{C}^{\perp} = \mathrm{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp})$$

Let
$$\mathcal{C} = \mathrm{GRS}_k(\mathbf{c}, \mathbf{d}) \implies \mathcal{C}^{\perp} = \mathrm{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp})$$

Consider the codes

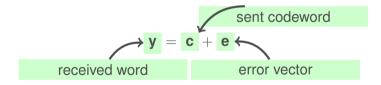
$$\mathcal{A} = \mathrm{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp})$$
 and $\mathcal{B} = \mathrm{GRS}_t(\mathbf{c}, \mathbf{1})$

Let
$$\mathcal{C} = \mathrm{GRS}_k(\mathbf{c}, \mathbf{d}) \implies \mathcal{C}^{\perp} = \mathrm{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp})$$

Consider the codes

$$\mathcal{A} = \mathrm{GRS}_{t+1}(\mathbf{C}, \mathbf{d}^{\perp})$$
 and

$$\mathcal{B} = \mathrm{GRS}_t(\mathbf{c}, \mathbf{1})$$

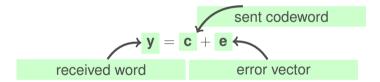


Let
$$\mathcal{C} = \mathrm{GRS}_k(\mathbf{c}, \mathbf{d}) \implies \mathcal{C}^{\perp} = \mathrm{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp})$$

Consider the codes

$$\mathcal{A} = \mathrm{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp})$$
 and

$$\mathcal{B} = \mathrm{GRS}_t(\mathbf{c}, \mathbf{1})$$



Define:
$$\mathcal{K}_{f y} = \left\{ f a \in oldsymbol{\mathcal{A}} \mid \langle f y, f a st f b
angle = f 0$$
 , for all $f b \in oldsymbol{\mathcal{B}}
ight\}$

$$K_y = K_e$$
?

$$K_y = K_e$$
?

$$\mathcal{A} * \mathcal{B} = \operatorname{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * \operatorname{GRS}_t(\mathbf{c}, \mathbf{1})$$

$$K_y = K_e$$
?

$$\mathcal{A} * \mathcal{B} = \operatorname{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * \operatorname{GRS}_{t}(\mathbf{c}, \mathbf{1})$$
$$= \operatorname{GRS}_{2t}(\mathbf{c}, \mathbf{d}^{\perp})$$

$$K_y = K_e$$
?

$$\mathcal{A} * \mathcal{B} = \text{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * \text{GRS}_t(\mathbf{c}, \mathbf{1})$$
$$= \text{GRS}_{2t}(\mathbf{c}, \mathbf{d}^{\perp})$$
$$= \text{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp})$$

$$K_y = K_e$$
?

$$\mathcal{A} * \mathcal{B} = \text{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * \text{GRS}_t(\mathbf{c}, \mathbf{1})$$
$$= \text{GRS}_{2t}(\mathbf{c}, \mathbf{d}^{\perp})$$
$$= \text{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp}) = \mathcal{C}^{\perp}$$

$$K_y = K_e$$
?

Take notice that:

$$\mathcal{A} * \mathcal{B} = GRS_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * GRS_t(\mathbf{c}, \mathbf{1})$$
$$= GRS_{2t}(\mathbf{c}, \mathbf{d}^{\perp})$$
$$= GRS_{n-k}(\mathbf{c}, \mathbf{d}^{\perp}) = \mathcal{C}^{\perp}$$

Thus, for all $\mathbf{a} \in \mathcal{A}$ and $\mathbf{b} \in \mathcal{B}$

$$\langle \mathbf{y}, \mathbf{a} * \mathbf{b}
angle$$

$$K_y = K_e$$
?

Take notice that:

$$\mathcal{A} * \mathcal{B} = \operatorname{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * \operatorname{GRS}_{t}(\mathbf{c}, \mathbf{1})$$
$$= \operatorname{GRS}_{2t}(\mathbf{c}, \mathbf{d}^{\perp})$$
$$= \operatorname{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp}) = \mathcal{C}^{\perp}$$

Thus, for all $\mathbf{a} \in \mathcal{A}$ and $\mathbf{b} \in \mathcal{B}$

$$\langle \mathsf{y}, \mathsf{a} * \mathsf{b}
angle = \langle \mathsf{c} + \mathsf{e}, \mathsf{a} * \mathsf{b}
angle$$

$$K_y = K_e$$
?

Take notice that:

$$\mathcal{A} * \mathcal{B} = \operatorname{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * \operatorname{GRS}_{t}(\mathbf{c}, \mathbf{1})$$
$$= \operatorname{GRS}_{2t}(\mathbf{c}, \mathbf{d}^{\perp})$$
$$= \operatorname{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp}) = \mathcal{C}^{\perp}$$

Thus, for all $\mathbf{a} \in \mathcal{A}$ and $\mathbf{b} \in \mathcal{B}$ $\langle \mathbf{y}, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{c} + \mathbf{e}, \mathbf{a} * \mathbf{b} \rangle = \underbrace{\langle \mathbf{c}, \mathbf{a} * \mathbf{b} \rangle}_{=0} + \langle \mathbf{e}, \mathbf{a} * \mathbf{b} \rangle$

$$K_y = K_e$$
?

Take notice that:

$$\mathcal{A} * \mathcal{B} = \operatorname{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * \operatorname{GRS}_{t}(\mathbf{c}, \mathbf{1})$$
$$= \operatorname{GRS}_{2t}(\mathbf{c}, \mathbf{d}^{\perp})$$
$$= \operatorname{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp}) = \mathcal{C}^{\perp}$$

Thus, for all $\mathbf{a} \in \mathcal{A}$ and $\mathbf{b} \in \mathcal{B}$

$$\langle \mathbf{y}, \mathbf{a} \ast \mathbf{b} \rangle \, = \langle \mathbf{e}, \mathbf{a} \ast \mathbf{b} \rangle$$

$$K_y = K_e$$
?

Take notice that:

$$\mathcal{A} * \mathcal{B} = \operatorname{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * \operatorname{GRS}_{t}(\mathbf{c}, \mathbf{1})$$
$$= \operatorname{GRS}_{2t}(\mathbf{c}, \mathbf{d}^{\perp})$$
$$= \operatorname{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp}) = \mathcal{C}^{\perp}$$

Thus, for all $\mathbf{a} \in \mathcal{A}$ and $\mathbf{b} \in \mathcal{B}$

$$\langle \mathsf{y}, \mathsf{a} * \mathsf{b}
angle = \langle \mathsf{e}, \mathsf{a} * \mathsf{b}
angle$$

Or equivalently, $K_{\mathbf{y}} = K_{\mathbf{e}}$

$$K_y = K_e$$
? YES, since $\mathcal{A} * \mathcal{B} = \mathcal{C}^{\perp}$

Take notice that:

$$\mathcal{A} * \mathcal{B} = \operatorname{GRS}_{t+1}(\mathbf{c}, \mathbf{d}^{\perp}) * \operatorname{GRS}_{t}(\mathbf{c}, \mathbf{1})$$
$$= \operatorname{GRS}_{2t}(\mathbf{c}, \mathbf{d}^{\perp})$$
$$= \operatorname{GRS}_{n-k}(\mathbf{c}, \mathbf{d}^{\perp}) = \mathcal{C}^{\perp}$$

Thus, for all $\mathbf{a} \in \mathcal{A}$ and $\mathbf{b} \in \mathcal{B}$

$$\langle \mathsf{y}, \mathsf{a} * \mathsf{b}
angle = \langle \mathsf{e}, \mathsf{a} * \mathsf{b}
angle$$

Or equivalently, $K_{\mathbf{y}} = K_{\mathbf{e}}$

There exists a nonzero $a \in K_y$?

There exists a nonzero $a \in K_y$?

We define
$$f(X) = \prod_{i \in \text{supp}(\mathbf{e})} (X - c_i) \implies \text{deg}(f) = t < t + 1$$
, i.e. $f \in L_{t+1}$

There exists a nonzero $a \in K_y$?

We define
$$f(X) = \prod_{i \in \text{supp}(\mathbf{e})} (X - c_i) \implies \text{deg}(f) = t < t + 1$$
, i.e. $f \in L_{t+1}$

$$\mathbf{a} = \mathbf{d}^{\perp} * f(\mathbf{c}) = \operatorname{ev}_{\mathbf{c},\mathbf{d}^{\perp}}(f) \in \mathcal{A} = \operatorname{GRS}_{t+1}(\mathbf{c},\mathbf{d}^{\perp})$$

There exists a nonzero $a \in K_y$?

We define
$$f(X) = \prod_{i \in \text{supp}(\mathbf{e})} (X - c_i) \implies \text{deg}(f) = t < t + 1$$
, i.e. $f \in L_{t+1}$

$$\mathbf{a} = \mathbf{d}^{\perp} * f(\mathbf{c}) = \operatorname{ev}_{\mathbf{c},\mathbf{d}^{\perp}}(f) \in \mathcal{A} = \operatorname{GRS}_{t+1}(\mathbf{c},\mathbf{d}^{\perp})$$

Moreover, $\mathbf{a} * \mathbf{e} = \mathbf{0}$. Thus $\mathbf{a} \in K_{\mathbf{y}}$

There exists a nonzero $a \in K_y$?

YES, since
$$K(A) > t$$

We define $f(X) = \prod_{i \in \text{supp}(\mathbf{e})} (X - c_i) \implies \text{deg}(f) = t < t + 1$, i.e. $f \in L_{t+1}$

$$\mathbf{a} = \mathbf{d}^{\perp} * f(\mathbf{c}) = \operatorname{ev}_{\mathbf{c},\mathbf{d}^{\perp}}(f) \in \mathcal{A} = \operatorname{GRS}_{t+1}(\mathbf{c},\mathbf{d}^{\perp})$$

Moreover, $\mathbf{a} * \mathbf{e} = \mathbf{0}$. Thus $\mathbf{a} \in K_{\mathbf{y}}$

Let $\mathbf{a} \in K_{\mathbf{y}}$, $\mathbf{a} \neq \mathbf{0} \Longrightarrow \operatorname{supp}(\mathbf{e}) \subseteq \overline{\operatorname{supp}(\mathbf{a})}$?

Let
$$\mathbf{a} \in K_{\mathbf{y}}$$
, $\mathbf{a} \neq \mathbf{0} \Longrightarrow \operatorname{supp}(\mathbf{e}) \subseteq \overline{\operatorname{supp}(\mathbf{a})}$?

Indeed,

$$\mathbf{0} = \langle \mathbf{e}, \mathbf{a} \ast \mathbf{b} \rangle = \langle \mathbf{e} \ast \mathbf{a}, \mathbf{b} \rangle \implies \mathbf{e} \ast \mathbf{a} \in \ \mathcal{B}^{\perp}$$

Let
$$\mathbf{a} \in K_{\mathbf{y}}$$
, $\mathbf{a} \neq \mathbf{0} \Longrightarrow \operatorname{supp}(\mathbf{e}) \subseteq \overline{\operatorname{supp}(\mathbf{a})}$?

Indeed,

$$\mathbf{0} = \langle \mathbf{e}, \mathbf{a} \ast \mathbf{b} \rangle = \langle \mathbf{e} \ast \mathbf{a}, \mathbf{b} \rangle \implies \mathbf{e} \ast \mathbf{a} \in \ \mathcal{B}^{\perp}$$

But $w_H(\mathbf{e} * \mathbf{a}) \le w_H(\mathbf{e}) < t < |\mathbf{d}(\mathcal{B}^{\perp})|$

Let
$$\mathbf{a} \in K_{\mathbf{y}}$$
, $\mathbf{a} \neq \mathbf{0} \Longrightarrow \operatorname{supp}(\mathbf{e}) \subseteq \overline{\operatorname{supp}(\mathbf{a})}$?

Indeed,

$$\mathbf{0} = \langle \mathbf{e}, \mathbf{a} \ast \mathbf{b} \rangle = \langle \mathbf{e} \ast \mathbf{a}, \mathbf{b} \rangle \implies \mathbf{e} \ast \mathbf{a} \in \ \mathcal{B}^{\perp}$$

But $w_H(\mathbf{e} * \mathbf{a}) \le w_H(\mathbf{e}) < t < d(\mathcal{B}^{\perp})$ Thus $\mathbf{e} * \mathbf{a} = \mathbf{0}$, i.e.

$$\operatorname{supp}(\mathbf{e}) \subseteq \{1, \ldots, n\} - \operatorname{supp}(\mathbf{a}) = \overline{\operatorname{supp}(\mathbf{a})}$$

YES, since $d(\mathcal{B}^{\perp}) > t$

Let
$$\mathbf{a} \in K_{\mathbf{y}}$$
, $\mathbf{a} \neq \mathbf{0} \Longrightarrow \operatorname{supp}(\mathbf{e}) \subseteq \overline{\operatorname{supp}(\mathbf{a})}$?

Indeed,

$$0 = \langle \mathbf{e}, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{e} * \mathbf{a}, \mathbf{b} \rangle \implies \mathbf{e} * \mathbf{a} \in \mathcal{B}^{\perp}$$

But $w_H(\mathbf{e} * \mathbf{a}) \le w_H(\mathbf{e}) < t < d(\mathcal{B}^{\perp})$ Thus $\mathbf{e} * \mathbf{a} = \mathbf{0}$, i.e.

$$\operatorname{supp}(\mathbf{e}) \subseteq \{1, \ldots, n\} - \operatorname{supp}(\mathbf{a}) = \overline{\operatorname{supp}(\mathbf{a})}$$

Let $\mathbf{a} \in K_{\mathbf{y}}$ such that $\mathbf{a} \neq 0$. If there have been no more than t errors (i.e. $w_H(\mathbf{e}) \leq t$), then \mathbf{e} is a solution of: $\langle \mathbf{y}, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{e}, \mathbf{a} * \mathbf{b} \rangle$ for all $\mathbf{b} \in \mathcal{B}$ with $e_j \neq 0$ for all $j \in \overline{\operatorname{supp}(\mathbf{a})}$

Let $\mathbf{a} \in K_{\mathbf{y}}$ such that $\mathbf{a} \neq 0$. If there have been no more than *t* errors (i.e. $w_H(\mathbf{e}) \leq t$), then \mathbf{e} is a solution of: $\langle \mathbf{y}, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{e}, \mathbf{a} * \mathbf{b} \rangle$ for all $\mathbf{b} \in \mathcal{B}$ with $\mathbf{e}_i \neq 0$ for all $j \in \overline{\operatorname{supp}(\mathbf{a})}$

Is the solution unique?

Let $\mathbf{a} \in K_{\mathbf{y}}$ such that $\mathbf{a} \neq \mathbf{0}$.

If there have been no more than *t* errors (i.e. $w_H(\mathbf{e}) \leq t$), then **e** is a solution of:

$$\langle \mathsf{y}, \mathsf{a} * \mathsf{b}
angle = \langle \mathsf{e}, \mathsf{a} * \mathsf{b}
angle$$
 for all $\mathsf{b} \in \mathcal{B}$ with $e_j
eq 0$ for all $j \in \overline{\mathrm{supp}(\mathsf{a})}$

Is the solution unique?

Suppose that \mathbf{e}_1 and \mathbf{e}_2 are solutions of the above system.

Let $\mathbf{a} \in K_{\mathbf{y}}$ such that $\mathbf{a} \neq 0$. If there have been no more than *t* errors (i.e. $w_H(\mathbf{e}) \leq t$), then \mathbf{e} is a solution of: $\langle \mathbf{y}, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{e}, \mathbf{a} * \mathbf{b} \rangle$ for all $\mathbf{b} \in \mathcal{B}$ with $\mathbf{e}_i \neq 0$ for all $j \in \overline{\operatorname{supp}(\mathbf{a})}$

Is the solution unique?

Suppose that \mathbf{e}_1 and \mathbf{e}_2 are solutions of the above system. Then,

$$\langle \mathbf{e}_1, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{e}_2, \mathbf{a} * \mathbf{b} \rangle \text{ with } \begin{cases} \operatorname{supp}(\mathbf{e}_1) \subseteq \overline{\operatorname{supp}(\mathbf{a})} \\ \operatorname{supp}(\mathbf{e}_2) \subseteq \overline{\operatorname{supp}(\mathbf{a})} \end{cases}$$

Let $\mathbf{a} \in K_{\mathbf{y}}$ such that $\mathbf{a} \neq 0$. If there have been no more than *t* errors (i.e. $w_H(\mathbf{e}) \leq t$), then \mathbf{e} is a solution of: $\langle \mathbf{y}, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{e}, \mathbf{a} * \mathbf{b} \rangle$ for all $\mathbf{b} \in \mathcal{B}$ with $e_i \neq 0$ for all $j \in \overline{\operatorname{supp}(\mathbf{a})}$

Is the solution unique?

Suppose that \mathbf{e}_1 and \mathbf{e}_2 are solutions of the above system. Then,

$$\langle \mathbf{e}_1, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{e}_2, \mathbf{a} * \mathbf{b} \rangle \text{ with } \begin{cases} \operatorname{supp}(\mathbf{e}_1) \subseteq \overline{\operatorname{supp}(\mathbf{a})} \\ \operatorname{supp}(\mathbf{e}_2) \subseteq \overline{\operatorname{supp}(\mathbf{a})} \end{cases}$$

Then $\mathbf{e}_1 - \mathbf{e}_2 \in \mathcal{C}$, but

 $w_H(\mathbf{e}_1 - \mathbf{e}_2) \le n - |\mathrm{supp}(\mathbf{a})| \le d(\mathcal{C}) - 1$

which **contradicts** the minimality of d(C).

5

Let
$$\mathbf{a} \in K_{\mathbf{y}}$$
 such that $\mathbf{a} \neq 0$.
If there have been no more than t errors (i.e. $w_{H}(\mathbf{e}) \leq t$), then \mathbf{e} is a solution of:
 $\langle \mathbf{y}, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{e}, \mathbf{a} * \mathbf{b} \rangle$ for all $\mathbf{b} \in \mathcal{B}$ with $e_{j} \neq 0$ for all $j \in \overline{\operatorname{supp}(\mathbf{a})}$
Is the solution unique?
Suppose that \mathbf{e}_{1} and \mathbf{e}_{2} are solutions of the above system. Then,
 $\langle \mathbf{e}_{1}, \mathbf{a} * \mathbf{b} \rangle = \langle \mathbf{e}_{2}, \mathbf{a} * \mathbf{b} \rangle$ with $\begin{cases} \operatorname{supp}(\mathbf{e}_{1}) \subseteq \overline{\operatorname{supp}(\mathbf{a})} \\ \operatorname{supp}(\mathbf{e}_{2}) \subseteq \overline{\operatorname{supp}(\mathbf{a})} \end{cases}$

Then $\mathbf{e}_1 - \mathbf{e}_2 \in \mathcal{C}$, but

 $w_{H}(\mathbf{e}_{1} - \mathbf{e}_{2}) \leq n - |\mathrm{supp}(\mathbf{a})| \leq d(\mathcal{C}) - 1$

which **contradicts** the minimality of d(C).

5

• GRS code are the prime examples of codes that have a *t*-ECP.

- GRS code are the prime examples of codes that have a *t*-ECP.
- Let D be a code that has (A, B) as t-ECP and suppose that C ⊆ D. Then (A, B) is also a t-ECP for C.

- GRS code are the prime examples of codes that have a *t*-ECP.
- Let D be a code that has (A, B) as t-ECP and suppose that C ⊆ D. Then (A, B) is also a t-ECP for C.

In particular subcodes of GRS codes have a t-ECP

- 1. Alternant codes
- 2. Goppa codes

- GRS code are the prime examples of codes that have a *t*-ECP.
- Let D be a code that has (A, B) as t-ECP and suppose that C ⊆ D. Then (A, B) is also a t-ECP for C.

In particular subcodes of GRS codes have a t-ECP

- 1. Alternant codes
- 2. Goppa codes
- AG codes also have a t-ECP

- GRS code are the prime examples of codes that have a *t*-ECP.
- Let \mathcal{D} be a code that has $(\mathcal{A}, \mathcal{B})$ as *t*-ECP and suppose that $\mathcal{C} \subseteq \mathcal{D}$. Then $(\mathcal{A}, \mathcal{B})$ is also a *t*-ECP for \mathcal{C} .

In particular subcodes of GRS codes have a t-ECP

- 1. Alternant codes
- 2. Goppa codes
- AG codes also have a t-ECP
- ECP for cyclic codes were investigated by Duursma and Kötter.

I. Duursma

Decoding codes from curves and cyclic codes. Ph.D thesis, Eindhoven University of Technology (1993)

I. Duursma, R. Kötter.

Error-locating pairs for cyclic codes. IEEE Trans. Inform. Theory, Vol.40, 1108–1121 (1994)

Error-correcting pairs (ECP)

Let:

and $\rightarrow C$ be an $[n, K(C)]_a$ code.

R. Pellikaan

On decoding by error location and dependent sets of error positions.

Discrete Math., 106-107; 369-381 (1992).

R. Kötter.

A unified description of an error locating procedure for linear codes

In Proceedings of Algebraic and Combinatorial Coding Theory. 113-117, Voneshta Voda (1992).

Error-correcting pairs (ECP)

Let:

$\rightarrow C$ be an $[n, K(C)]_a$ code.

and

 \rightarrow A be an $[n, K(A)]_{a^m}$ code \rightarrow B be an $[n, K(B)]_{a^m}$ code

R. Pellikaan

On decoding by error location and dependent sets of error positions.

Discrete Math., 106-107; 369-381 (1992).

R. Kötter.

A unified description of an error locating procedure for linear codes

In Proceedings of Algebraic and Combinatorial Coding Theory. 113-117, Voneshta Voda (1992).

Error-correcting pairs (ECP)

Let:

→ C be an $[n, K(C)]_q$ code. and

→ A be an $[n, K(A)]_{q^m}$ code → B be an $[n, K(B)]_{q^m}$ code

(A, B) is a *t*-ECP for C if the following properties hold:

E.1
$$(A * B) \perp C$$
.
E.2 $K(A) > t$.
E.3 $d(B^{\perp}) > t$.
E.4 $d(A) + d(C) > n$.

R. Pellikaan

On decoding by error location and dependent sets of error positions.

Discrete Math., 106–107: 369–381 (1992).

R. Kötter.

A unified description of an error locating procedure for linear codes.

In Proceedings of Algebraic and Combinatorial Coding Theory, 113–117. Voneshta Voda (1992).

Error-correcting pairs (ECP)

and

Let:

→ C be an $[n, K(C)]_q$ code.

→ A be an $[n, K(A)]_{q^m}$ code → B be an $[n, K(B)]_{q^m}$ code

(A, B) is a *t*-ECP for C if the following properties hold:

E.1
$$(A * B) \perp C$$
.
E.2 $K(A) > t$.
E.3 $d(B^{\perp}) > t$.
E.4 $d(A) + d(C) > n$

An $[n, k]_q$ code which has a *t*-ECP over \mathbb{F}_{q^m} has an efficient decoding algorithm.

R. Pellikaan

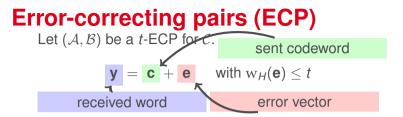
On decoding by error location and dependent sets of error positions.

Discrete Math., 106–107: 369–381 (1992).

R. Kötter.

A unified description of an error locating procedure for linear codes.

In Proceedings of Algebraic and Combinatorial Coding Theory, 113–117. Voneshta Voda (1992).



1. There exists $\mathbf{a} \in \mathcal{A}$, $\mathbf{a} \neq \mathbf{0}$ such that

$$\langle {f y}, {f a} * {f b}
angle = {f 0}$$
 for all ${f b} \in {\cal B}$

(1)

2. For every solution $\mathbf{a} \in \mathcal{A}$ of (1) we have that:

 $\mathbf{a} * \mathbf{e} = \mathbf{0}$

3. Since $d(A) + d(C) \ge n$. Then, **e** is the **unique** solution of:

 $\langle \mathbf{e}, \mathbf{a} * \mathbf{b} \rangle = \mathbf{0}$ with $\mathbf{e} * \mathbf{a} = \mathbf{0}$ for all $\mathbf{b} \in \mathcal{B}$

4. Key Attacks

- 1. Introduction
- 2. Support Splitting Algorithm
- 3. Distinguisher for GRS codes
- 4. Attack against subcodes of GRS codes
- 5. Error-Correcting Pairs
- 6. Attack against GRS codes
- 7. Attack against Reed-Muller codes
- 8. Attack against Algebraic Geometry codes
- 9. Goppa codes still resist