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a gen. matrix of C C GRSk(a, b)

Public Key: Kpuw = { and f — {n kJ
a 2

The Algorithm:

STEP 1 Compute ¢(®.
With High Probability:

C®) = GRSk(a,b)® = GRSy_1(a,b * b)
STEP 2 Apply the Sidelnikov-Shestakov attack to recover
a and bxb
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Let:
=» C be an [n, k]q code
= (J,J) be a partition of {1,...,n}
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The words of S,(C) are codewords of C that have a zero in
the J-locations, i.e.
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Let:
=» C be an [n, k]q code 0 ’
= (J,J) be a partition of {1,...,n} G—

= X, the restriction of x € Fy to the 0O ... 0
coordinates indexed by J :
0 ... 0

Shortened code S,(C)

The words of S,(C) are codewords of C that have a zero in
the J-locations, i.e.

Sy(C)={cjlceCandc;=0foralljc J}
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Let:
=» C be an [n, k]q code 0
= (J,J) be a partition of {1,...,n} G—
= X, the restriction of x € Fy to the 0
coordinates indexed by J :
0

Generator matrix
for SJ(C)

Shortened code S,(C)

The words of S,(C) are codewords of C that have a zero in
the J-locations, i.e.

Sy(C)={cjlceCandc;=0foralljc J}

\Nd

]

‘k—|J| 7N



Shortening a GRS code
The shortened code of a GRS code is GRS code

For GRS code we always have:
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Shortening a GRS code
The shortened code of a GRS code is GRS code

For GRS code we always have:

S, (GRSk(a, b)) = GRS,,_y(ag, b') with b} = b; [ [ (ai - &)
jed

Proof: Assume J = {1}. Let G be a gen. matrix for GRS«(a, b).

1 & L.k _)91_%
G = 0 b A 1
B : . " ——d;=9;—aig;_1,foralli>2
0: b’ k 2 . b;,an_2
0 if j = 1
- 1) bi(aj—a)a " ifj>2
Generafor matrix ~ Thus.gj =4 b(3-a)g j>

. for S; (GRSk(a, b)) o
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Attack -If 2k —1>n—2

a gen. matrix of C C GRSk(a, b)
Public Key: Kpuwb = and = {n - kJ

2

The Algorithm:
STEP 1 Chose a set of indices
J={i,...,in} C{1,...,n} suchthat2(k — N) <n-2
STEP 2 Compute a generator matrix of the shortened code S,(C)
Sy(C) € GRSk_n(ay,b’)

Recall that
with b} = b; [ [(ai — &) for all j ¢ J

jed
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Attack - If 2k —1 >n—2

a gen. matrix of C C GRSk(a, b)
Public Key: Kpuwb = and = {n - kJ
n 2

The Algorithm:
STEP 1 Chose a set of indices

J={i,...,in} C{1,...,n} suchthat2(k — N) <n-2

STEP 2 Compute a generator matrix of the shortened code S;(C) C GRS,_n(ay, b’)
STEP 3 Apply the previous algorithm to retrieve a; and b’.

Note that 2(k — N) < n—2.
STEP 4 Returnto STEP 1 until a is completely retrieved.
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