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Generalized Reed-Solomon codes

‹ n, k nonnegative integers such that 1  k  n  q.

‹ a = (a1, . . . , an) 2 Fn
q with ai 6= aj for all i 6= j . =) code locators

‹ b = (b1, . . . , bn) 2 Fn
q with bi 6= 0 for all i . =) column multipliers

Polynomial Vector

Space:

Lk = Fq[X ]<k = {f (X ) 2 Fq[X ] | deg(f ) < k}
Lk is a vector space of dimension k over Fq

A basis for Lk is
n

1,X ,X 2, . . . ,X k�1
o

Evaluation

Map:

ev
a,b Lk �! Fn

q

f (X ) 7�! b ⇤ f (a)
= (b1f (a1), . . . , bnf (an))

The Generalized Reed-Solomon code (GRS)

GRSk (a,b) =
n

ev
a,b (f ) | f 2 Lk

o

1
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Some Properties - GRS codes

Parameters - GRS are optimal codes

The GRSk (a,b) is an [n, k ]q code with minimum distance d = n � k + 1

The dual code of a GRS code is a GRS code

GRSk (a,b)
? = GRSn�k (a,b

?)

GRS codes under transformations

There exists
‹ c = (c1, . . . , cn) 2 Fn

q with ci 6= cj for all i 6= j such that c1 = 0 and c2 = 1
‹ d = (d1, . . . , dn) 2 Fn

q with di 6= 0 for all i .

such that: GRSk (a,b) = GRSk (c,d)

2
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McEliece based on GRS codes

‚ Generalized Reed-Solomon codes

H. Niederreiter.
Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159-166, 1986.

Parameters Key size Security level
[256, 128, 129]256 67 ko 295

7Attack against this proposal:

V. M. Sidelnikov and S. O. Shestakov.
On the insecurity of cryptosystems based on generalized Reed-Solomon codes.
Discrete Math. Appl., 2:439-444, 1992.
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Star Product

Given two vectors a = (a1, . . . , an) 2 Fn
q and b = (b1, . . . , bn) 2 Fn

q we denote by
a ⇤ b the componentwise product:

a ⇤ b = (a1b1, . . . , anbn)

Star Product of Codes

Let A and B be Fq-codes of length n.
The star product code denoted by A ⇤ B is:

A ⇤ B = h{a ⇤ b | a 2 A and b 2 B}i

When B = A, then A ⇤ A is called the square of A and is denoted by A2

4
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Dimension of the Square Code

Proposition: Dimension of the Square Code

Let A and B be Fq-codes of length n with (ai)i2I and (bj)j2J as bases, respectively.
Then:

1. K (A ⇤ B)  K (A)K (B)

2. K (A2) 
✓

K (A) + 1
2

◆

Complexity of computing A2 is
O
⇣

K (A)2n2
⌘

operations in Fq.

Proof:

Note that:
1. A ⇤ B is generated by the ai ⇤ bj

0s with i 2 I and j 2 J

2. A2 is generated by the ai ⇤ aj with i  j

5
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Dimension of the Square Code

Proposition:

Let A be an [n, k ]q code.
The complexity of computing the code A2 is O

⇣

k2n2
⌘

operations in Fq.

Proof:

1. Computing all of the
✓

k(A) + 1
2

◆

generators of A2, i.e. ai ⇤ aj with i  j

‹ Cost: O(k2n) operations in Fq

2. Apply Gaussian elimination to a
✓

k + 1
2

◆

⇥ n matrix

‹ Cost: O(k2n2) operations in Fq

6
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Distinguisher - Square Code

Let A be an [n, k ]q random linear code.
We expect that the dimension of A2 should be of order:

K (A2) ⇠ min
⇢✓

k + 1
2

◆

, n
�

Theorem:

Let A be a random linear code of dimension k such that k = O(
p

n). Then,

Pr
✓

K (A2) <

✓

k + 1
2

◆◆

���!
n!1

0

J.C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret and J.P. Tillich.
A distinguisher for high-rate McEliece cryptosystems.
IEEE Transactions on Information Theory, 59(10):6830-8644, 2013.
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Distinguisher - Square Code - GRS codes

Proposition:

If k  n + 1
2

. Then,

GRSk (a,b)
2 = GRS2k�1(a,b ⇤ b)

Proof:

“=)” Let c1, c2 2 GRSk (a,b).
Then, there exists f , g 2 Fq[X ]<k such that

c1 ⇤ c2 = ev
a,b(f ) ⇤ ev

a,b(g) = (b ⇤ f (a)) ⇤ (b ⇤ g(a)) = (b ⇤ b) ⇤ (fg)(a)
with deg(fg)  2k � 2
Thus, c1 ⇤ c2 2 GRS2k�1(a,b ⇤ b)

“(=” The converse is proved similarly.

8



Distinguisher - Square Code - GRS codes

Proposition:

If k >
n + 1

2
, then we can apply the previous property to the dual of GRSk (a,b)

Proof:

1. Recall that, the dual of a GRS code is a GRS code:

GRSk (a,b)
?

| {z }

A

= GRSn�k (a, c)

2. Moreover, if k >
n + 1

2
, then:

K (A) = n � k < n � n + 1
2

<
n + 1

2
3. Applying the previous Proposition:

⇣

GRSk (a,b)
?
⌘2

= GRS2K (A)�1(a, c ⇤ c)
9



Distinguisher - Square Code - GRS codes

1. If C is a random linear code of length n, with high probability:

K (C2) = min
⇢✓

K (C) + 1
2

◆

, n
�

2. If C is a GRS code
K (C2) = min {2K (C)� 1, n}

I. Márquez-Corbella, E. Martínez-Moro and R. Pellikaan.
The non-gap sequence of a subcode of a generalized Reed-Solomon code.
Designs, Codes and Cryptography, volume 66, Issue 1-3, 317-333, 2013.

C. Wieschebrink.
Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes.
PQCrypto 2010, LNCS, volume 6061, 61-72, 2010.
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