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=» n, k nonnegative integers suchthat1 < k< n<aq.
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Some Properties - GRS codes

Parameters - GRS are optimal codes

The GRSk(a, b) is an [n, k|4 code with minimum distance d =n— k + 1

The dual code of a GRS code is a GRS code

GRSk(a,b)* = GRS,,_«(a,bt)

GRS codes under transformations

There exists
-> c:(c17...,c,,)eIFgwith ¢ # cjforall i # jsuchthat ¢y =0 and ¢, = 1
= d=(dy,...,dy) € Fgwith d; # 0 for all /.

such that: GRSk(a,b) = GRSk(c,d)




McEliece based on GRS codes

>> Generalized Reed-Solomon codes

@ H. Niederreiter.

Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159-166, 1986.
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McEliece based on GRS codes

>> Generalized Reed-Solomon codes

@ H. Niederreiter.
Knapsack-type cryptosystems and algebraic coding theory.

Problems of Control and Information Theory, 15(2):159-166, 1986.

Parameters

Key size

Security level

[256, 128, 129556

67 ko

295

X Attack against this proposal:

Ia V. M. Sidelnikov and S. O. Shestakov.

On the insecurity of cryptosystems based on generalized Reed-Solomon codes.

Discrete Math. Appl., 2:439-444, 1992.
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Star Product
Given two vectors a = (ay,...,an) € Fg andb = (by,...,by) € Fg we denote by
axb the componentwise product:

a*b:(a1b1a---7anbn)

Star Product of Codes

Let A and B be F4-codes of length n.
The star product code denoted by Ax B is:

AxB=({axb|ac Aandb ¢ B})

When B = A, then Ax A is called the square of A and is denoted by A?
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Dimension of the Square Code

Proposition: Dimension of the Square Code

Let A and B be F4-codes of length n with (a;);c; and (bj)cy as bases, respectively.
Then:

1. K(AxB) < K(A)K(B)

Complexity of computing A? is

O (K(A)2n?) operations in F,.
2. K(A?) < (K(A;“) ( ) a
Proof:
Note that:

1. Ax Bis generated by the a; «b/swith i € /and j € J
2. A?is generated by the a;  a; with j < j
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Dimension of the Square Code
Proposition:

Let A be an [n, k]4 code.
The complexity of computing the code A? is © <k2n2) operations in Fg.

Proof:

k(A) +1
2

= Cost: O(k?n) operations in

1. Computing all of the ( > generators of A2, i.e. a; xa; with / < j

: o k
2. Apply Gaussian elimination to a ( -

5 1) x N matrix

= Cost: O(k?n?) operations in Fq



Distinguisher - Square Code
Let A be an [n, k] random linear code.
We expect that the dimension of A? should be of order:

K(A2) ~ min{<k21>,n}

Let A be a random linear code of dimension k such that k = O(v/n). Then,

Pr (K(A2) < (kj;)) ——0

J.C. Faugere, V. Gauthier-Umafa, A. Otmani, L. Perret and J.P. Tillich.

A distinguisher for high-rate McEliece cryptosystems.
IEEE Transactions on Information Theory, 59(10):6830-8644, 2013.



Distinguisher - Square Code - GRS codes

Proposition:

n-+1

If kK < . Then,

GRSk(a,b)? = GRS,«_1(a,b * b)

Proof:

“—" Let cq,co € GRSk(a,b).
Then, there exists f, g € Fq[X] -k such that

Cq * C2 = evap(f) *evap(g) = (b f(a)) « (b x g(a)) = (b« b)  (fg)(a)
with deg(fg) < 2k — 2
Thus, ¢1 * €2 € GRSp,_1(a,b x b)

“<—=" The converse is proved similarly.



Distinguisher - Square Code - GRS codes

Proposition:

ks 10

, then we can apply the previous property to the dual of GRSk(a, b)

Proof:
1. Recall that, the dual of a GRS code is a GRS code:
GRSk(a,b)™ = GRS,_«(a, ¢)
A
n-+1

2. Moreover, if kK > 5 then:

K(A)=n—k<np_ntl _n+ti

2 2

3. Applying the previous Proposition:
2
(GRSk(a, b)J‘> = GRSZK(A)—1 (a, C * C)



Distinguisher - Square Code - GRS codes

1. If C is a random linear code of length n, with high probability:
K(C?) = min { <K(C;+ 1) : n}

K(C?) = min{2K(C) — 1,n}

2. If Cis a GRS code

@ |. Marquez-Corbella, E. Martinez-Moro and R. Pellikaan.
The non-gap sequence of a subcode of a generalized Reed-Solomon code.
Designs, Codes and Cryptography, volume 66, Issue 1-3, 317-333, 2013.
@ C. Wieschebrink.

Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes.
PQCrypto 2010, LNCS, volume 6061, 61-72, 2010.
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