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The Code Equivalence Problem of Linear Codes

The Code Equivalence Problem
INPUT: Two [n, k ]q linear codes: C1 and C2
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The Code Equivalence Problem of Linear Codes
‹ Complexity: The PE problem is not NP-Complete but it is at least as

hard as Graph Isomorphism Problem
E. Petrank and R.M. Roth,
Is code equivalence easy to decide?,
1997.

‹ Known Algorithms:

• The Support Splitting Algorithm for PE for F2, F3 and F4
N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

N. Sendrier and D. E. Simos
The hardness of code equivalence over Fq and its application to code-based cryptography.
Post-Quantum Cryptography, volume 7932 of LNCS, 203-216, 2013.

• Computation of canonical forms for LC over Fq, with q
small.

T. Feulner,
The automorphism groups of linear codes and canonical representatives of their semilinear
isometry classes,
AMC, vol. 3 (4), p. 363-383, 2009
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Invariants
Invariants

V is an invariant if C1 ⇠ C2 ) V(C1) = V(C2)

The Weight Enumerator is an invariant: C1 ⇠ C2 ) WC1(X ) = WC2(X )

Recall that WC(X ) =
nX

i=0

AiX i with Ai = | {c 2 C | wH(c) = i} |

WC1(X ) = WC2(X ) but C1 6⇠ C2

Consider two binary [6, 3] codes C1 and C2 with respective generator matrices:

G1 =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

!
and G2 =

 1 0 0 0 1 0
0 1 0 1 1 1
0 0 1 0 1 0

!

‹ Both codes have the same weight distribution: 1, 0, 3, 0, 3, 0, 1
‹ But they are not permutation-equivalent!
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Punctured code
Let:

‹ C be an [n, k ]q code

‹ (J, J) be a partition of {1, . . . , n}
‹ xJ the restriction of x 2 Fn

q to the
coordinates indexed by J

G =

Spans CJ

|J| n � |J|

Punctured code CJ

The words of CJ are codewords of C restricted to the
J-locations, i.e.

CJ =
�

cJ | c 2 C
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Signature

Signature
S is a signature if S(C, i) = S(�(C),�(i))

Building a signature from an invariant: If V is an invariant then,

C ⇠ Ĉ =)
⇢

V(C) = V(Ĉ)

{V(Ci) | i 2 {1, . . . , n}} = {V(Ĉi) | i 2 {1, . . . , n}}

Where Ci is the punctured code C on i
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Fully Discriminant Signatures

Fully Discriminant Signatures
A signature S is fully discriminant for C if:

S(C, i) 6= S(C, j) for all i 6= j

How to retrieve the permutation? Suppose that C2 = �(C1)
If S is fully discriminant for C then:

8i 2 {1, . . . , n}, 9 unique j such that S(C1, i) = S(C2, j)

=) �(i) = j
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Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let C = {1110, 0111, 1010} and Ĉ = {0011, 1011, 1101}

8
>><

>>:

C1 = {110, 111, 010} �! WC1 = X + X 2 + X 3

C2 = {110, 011} �! WC2 = 2X 2

C3 = {110, 011, 100} �! WC3 = X + 2X 2

C4 = {111, 011, 101} �! WC4 = 2X 2 + X 3

8
>>><

>>>:

Ĉ1 = {011, 101} �! WĈ1
= 2X 2

Ĉ2 = {011, 111, 101} �! WĈ2
= 2X 2 + X 3

Ĉ3 = {001, 101, 111} �! WĈ3
= X + X 2 + X 3

Ĉ4 = {001, 101, 110} �! WĈ4
= X + 2X 2

Thus �(1) = 3 �(2) = 1 �(3) = 4 and �(4) = 2
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8
>><

>>:

C1 = {110, 111, 010} �! WC1 = X + X 2 + X 3

C2 = {110, 011} �! WC2 = 2X 2

C3 = {110, 011, 100} �! WC3 = X + 2X 2

C4 = {111, 011, 101} �! WC4 = 2X 2 + X 3

8
>>><

>>>:
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= X + 2X 2

Thus �(1) = 3 �(2) = 1 �(3) = 4 and �(4) = 2
8



Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let C = {1110, 0111, 1010} and Ĉ = {0011, 1011, 1101}
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Refined Signatures

Refined Signature
Let S be a signature. Let J be a subset of {1, . . . , n} If C ⇠ Ĉ =) CJ ⇠ ĈJ

Thus S(CJ , i) and S(ĈJ , i) give additional information.

Example of Refined Signature

C =

⇢
01101, 01011,

01110, 10101, 11110

�
and Ĉ =

⇢
10101, 00111,

10011, 11100, 11011

�
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Some notation

From now on, let C be a linear code of length n defined over Fq. We denote

• Its dimension by K (C) .

• Its minimum distance by d(C) .
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Support Splitting Algorithm
The Algorithm:

Input: A signature S and two codes: C1 and C2.
1. Construct a sequence of signatures:

S0 = S,S1, . . . ,Sr

of increasing “discriminancy” such that Sr is
fully discriminant for C.

2. From Sr we retrieve � such that C2 = �(C1)

Proposal of signature: S(C, i) = WH(Ci )(X ) where H(C) = C \ C?

• For binary codes C of length n and h = dim(H(C)).
The (heuristic) complexity: O

⇣
n3 + 2hn2 log(n)

⌘

• When h �! 0, Then the Algorithm runs in polynomial time.

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.
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Application in Code-Based Cryptography
The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

‹ A Goppa code C = �(L, g) has :

K (C) � n � mt and d(C) � t + 1

‹ Let G
pub

2 Fk⇥n
2 be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over Fm
2 such that

k � n � mt .
2. We check the equivalence with the public code.

There are 2498.55 binary Goppa codes!!
(for n = 1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective
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