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Three notions of code
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The Code Equivalence Problem of Linear Codes

The Code Equivalence Problem

INPUT: Two [n, k]q linear codes: Cy and Cp
OUTPUT:
(Decision): Are Cq ~ Co?
(Computational): If Cy ~ C». Find o € S, such that Co = o(Cy)




The Code Equivalence Problem of Linear Codes

- Complexity: The PE problem is not NP-Complete but it is at least as
hard as Graph Isomorphism Problem

a E. Petrank and R.M. Roth,

Is code equivalence easy to decide?,
1997.



The Code Equivalence Problem of Linear Codes

- Complexity: The PE problem is not NP-Complete but it is at least as
hard as Graph Isomorphism Problem

a E. Petrank and R.M. Roth,

Is code equivalence easy to decide?,
1997.

- Known Algorithms:
e The Support Splitting Algorithm for PE for F5, F3 and Fy

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

@ N. Sendrier and D. E. Simos

The hardness of code equivalence over Fq and its application to code-based cryptography.
Post-Quantum Cryptography, volume 7932 of LNCS, 203-216, 2013.



The Code Equivalence Problem of Linear Codes

- Complexity: The PE problem is not NP-Complete but it is at least as
hard as Graph Isomorphism Problem

a E. Petrank and R.M. Roth,

Is code equivalence easy to decide?,
1997.

- Known Algorithms:
e The Support Splitting Algorithm for PE for F5, F3 and Fy

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,

IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

@ N. Sendrier and D. E. Simos

The hardness of code equivalence over Fq and its application to code-based cryptography.
Post-Quantum Cryptography, volume 7932 of LNCS, 203-216, 2013.

o Computation of canonical forms for LC over g, with q
small.

T. Feulner,
The automorphism groups of linear codes and canonical representatives of their semilinear

isometry classes,
AMC, vol. 3 (4), p. 363-383, 2009



Invariants

Vis aninvariant if C1 ~ Co = V(C1) = V(C>)




Invariants

Vis aninvariant if C1 ~ Co = V(C1) = V(C>)

The Weight Enumerator is an invariant: Ci ~ Co; = W, (X) = We,(X)

n
Recall that We(X) = > AX with A; = | {c € C | wy(c) = i} |
i=0



Invariants

Vis aninvariant if C; ~ Co = V(Cq) = V(C2)

The Weight Enumerator is an invariant: C1 ~ Co = W, (X) = We,(X)

n
Recall that We(X) = > AX with A; = | {c € C | wy(c) = i} |
i=0

We, (X) = We,(X) but Cq £ Co
Consider two binary [6, 3] codes Cy and C, with respective generator matrices:

110000 100010
Gi=[001 100 ]]adG=[01011 1
0000 1 1 001010

=» Both codes have the same weight distribution: 1, 0, 3, 0, 3, 0, 1
=» But they are not permutation-equivalent!
4
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Punctured code

Let:

||

n—_\Jl
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=» C be an [n, k]q code

=» (J,J) be a partition of {1,...,n}

= x, the restriction of x € Fy to the
coordinates indexed by J

Spans Cy

Punctured code C,

The words of C; are codewords of C restricted to the
J-locations, i.e.
Cs={cjlcecC}
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Signature

S is a signature if S(C, i) = S(o(C), o(i))

Building a signature from an invariant: If V is an invariant then,

V() = V(C) A
weE)lie{t,....,ny =@ |ie{l,....n}

Where C; is the punctured code C on i

CNCA:>{
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Fully Discriminant Signatures

Fully Discriminant Signatures

A signature S is fully discriminant for C if:

S(C,i) # S(C,j) forall i # j

How to retrieve the permutation? Suppose that C, = o(Cy)
If S is fully discriminant for C then:

Vie {1,...,n},3unique j such that S(Cy,i) = S(Ca,j) = al(i) =j



Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let ¢ ={1110,0111,1010} and ¢ ={0011,1011,1101}




Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let ¢ ={1110,0111,1010} and ¢ ={0011,1011,1101}
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An Example of Fully Discriminant Signature

Let ¢ ={1110,0111,1010} and ¢ = {0011,1011,1101}
(C; ={110,111,010} — W, =X+ X2+ X3
Co = {110,011} — W, = 2X?
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¢ = {011,101} — W, =2X°
Cp ={011,111,101} — W, =2X*+ X°
Cs ={001,101,111} — Wz =X+ X*+ X°
Ca ={001,101,110} — Wy, = X +2X?
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Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let ¢ ={1110,0111,1010} and ¢ ={0011,1011,1101}
(C; ={110,111,010} — W, =X+ X2+ X3
Co = {110,011} — We, =2X?
C3 = {110,011,100} — W, = X +2X?
Cp={111,011,101} — W, =2X2+ X°
¢ = {011,101} — W, =2X°
Co={011,111,101} — W, =2X2+ X5
C3={001,101,111} — Wz =X+ X2+ X°
Ca ={001,101,110} — Wy, = X +2X?

Thus o(1)=3 0(2)=1 0(3)=4 and o(4)=2
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Refined Signatures
Refined Signature

Let S be a signature. Let J be a subsetof {1,...,n} lfC~C = Cy~C,
Thus S(Cy, i) and S(C 7, i) give additional information.

Example of Refined Signature

C— 01101,01011, and C — 10101,00111,
~ | 01110,10101,11110 ~ | 10011,11100,11011

Wey (X) = We,(X) — o(1)=2
We,(X) = Wg,(X) = o(4) =4
Wey(X) = Wy (X) = o(5)=3
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Refined Signature

Let S be a signature. Let J be asubsetof {1,....,n} lfc~C = C;~C,
Thus S(Cy, i) and S(C 7, i) give additional information.
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C— 01101,01011, and = 10101,00111,
~ | 01110,10101,11110 ~ | 10011,11100,11011
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Thus: positions {2,3} in C and {1,5} in C cannot be discriminated
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Refined Signature

Let S be a signature. Let J be asubsetof {1,....n} lfc~C = C;~C(,
Thus S(Cy, i) and S(C7, i) give additional information.

.

Example of Refined Signature

C— 01101,01011, and ¢ — 10101,00111,
~ | 01110,10101,11110 ~ | 10011,11100,11011

Note that: We,(X) = We,(X) = Wa (X) = W(fg,(X)
Thus: positions {2,3} in C and {1,5} in C cannot be discriminated
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Some notation

From now on, let C be a linear code of length n defined over F,. We denote

e Its dimension by K(C) .

e Its minimum distance by d(C) .
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fully discriminant for C.
2. From S, we retrieve o such that Co = o(Cy)

Proposal of signature: S(C,/) = W, (X) where #(C) = C N ct
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Support Splitting Algorithm
The Algorithm:
Input: A signature S and two codes: Cy and Cs.
1. Construct a sequence of signatures:

So=8,81,....5

of increasing “discriminancy” such that S; is
fully discriminant for C.
2. From S, we retrieve o such that Co = o(Cy)

Proposal of signature: S(C,/) = W, (X) where #(C) = C N ct
e For binary codes C of length nand h = dim(#(C)).
The (heuristic) complexity: O <n3 + 2Mn? Iog(n))
e When h — 0, Then the Algorithm runs in polynomial time.

ﬁ N. Sendrier,

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,

1 '"ZE Trans. on Inf. Theory, vol. 46(4), 2000.
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binary Goppa code.
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Application in Code-Based Cryptography

The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

Goppa code

Let:
= L= (a1,...,an) € Fom with o ;éozjforalliyéj.
= g(X) € Fon[X] monic separable polynomial with deg(g) = t and g(«;) # OVi

[(L,g) = Alti(a,b) = (GRS(a, b)) N Fy

witha=Land b; = !
9(a))
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Application in Code-Based Cryptography

The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.
=» A Goppa code C =T(L,g) has :

K(C)>n—mt and d(C)>t+1

= LetGow € IE‘SX” be the public key of the McEliece scheme.
1. We enumerate all polynomials g of degree t over F3' such that
k> n— mt.
2. We check the equivalence with the public code.
There are 2% pinary Goppa codes!!
(for n=1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective
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