
Code-Based Cryptography

1. Error-Correcting Codes and Cryptography
2. McEliece Cryptosystem
3. Message Attacks (ISD)
4. Key Attacks
5. Other Cryptographic Constructions Relying on Coding Theory

I. Márquez-Corbella CODE-BASED CRYPTOGRAPHY

4. Key Attacks

1. Introduction
2. Support Splitting Algorithm
3. Distinguisher for GRS codes
4. Attack against subcodes of GRS codes
5. Error-Correcting Pairs
6. Attack against GRS codes
7. Attack against Reed-Muller codes
8. Attack against Algebraic Geometry codes
9. Goppa codes still resist

I. Márquez-Corbella CODE-BASED CRYPTOGRAPHY

The Code Equivalence Problem of Linear Codes

Permutation Code
Equivalence (PCE)

Semilinear Code
Equivalence (SLCE)

Linear Code
Equivalence (LCE)

Three notions of code
Equivalence:

1

The Code Equivalence Problem of Linear Codes

Permutation Code
Equivalence (PCE)

Semilinear Code
Equivalence (SLCE)

Linear Code
Equivalence (LCE)

Three notions of code
Equivalence:

Semilinear Code Equivalence (SLE)

C1
SLE⇠ C2 () 9� : C2 = �(C1)

with � = (� 2 Sn| {z }
Permutation

,� = (�1, . . . ,�n) 2 (F⇤
q)

n

| {z }
Scalar

,↵ 2 Aut(Fq)| {z }
Automorphism

)

1

The Code Equivalence Problem of Linear Codes

Permutation Code
Equivalence (PCE)

Semilinear Code
Equivalence (SLCE)

Linear Code
Equivalence (LCE)

Three notions of code
Equivalence:

Permutation Code Equivalence (PE)
C1 ⇠ C2 () 9 � 2 Sn| {z }

Permutation

: C2 = �(C1) = {�(x) | x 2 C}

1

The Code Equivalence Problem of Linear Codes

Permutation Code
Equivalence (PCE)

Semilinear Code
Equivalence (SLCE)

Linear Code
Equivalence (LCE)

Three notions of code
Equivalence:

Permutation Code Equivalence (PE)
C1 ⇠ C2 () 9 � 2 Sn| {z }

Permutation

: C2 = �(C1) = {�(x) | x 2 C}

1

The Code Equivalence Problem of Linear Codes

The Code Equivalence Problem
INPUT: Two [n, k]q linear codes: C1 and C2

OUTPUT:

(Decision): Are C1 ⇠ C2?
(Computational): If C1 ⇠ C2. Find � 2 Sn such that C2 = �(C1)

2

The Code Equivalence Problem of Linear Codes

The Code Equivalence Problem
INPUT: Two [n, k]q linear codes: C1 and C2

OUTPUT:

(Decision): Are C1 ⇠ C2?
(Computational): If C1 ⇠ C2. Find � 2 Sn such that C2 = �(C1)

2

The Code Equivalence Problem of Linear Codes

The Code Equivalence Problem
INPUT: Two [n, k]q linear codes: C1 and C2

OUTPUT:
(Decision): Are C1 ⇠ C2?

(Computational): If C1 ⇠ C2. Find � 2 Sn such that C2 = �(C1)

2

The Code Equivalence Problem of Linear Codes

The Code Equivalence Problem
INPUT: Two [n, k]q linear codes: C1 and C2

OUTPUT:
(Decision): Are C1 ⇠ C2?
(Computational): If C1 ⇠ C2. Find � 2 Sn such that C2 = �(C1)

2

The Code Equivalence Problem of Linear Codes
‹ Complexity: The PE problem is not NP-Complete but it is at least as

hard as Graph Isomorphism Problem
E. Petrank and R.M. Roth,
Is code equivalence easy to decide?,
1997.

‹ Known Algorithms:

• The Support Splitting Algorithm for PE for F2, F3 and F4
N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

N. Sendrier and D. E. Simos
The hardness of code equivalence over Fq and its application to code-based cryptography.
Post-Quantum Cryptography, volume 7932 of LNCS, 203-216, 2013.

• Computation of canonical forms for LC over Fq, with q
small.

T. Feulner,
The automorphism groups of linear codes and canonical representatives of their semilinear
isometry classes,
AMC, vol. 3 (4), p. 363-383, 2009

3

The Code Equivalence Problem of Linear Codes
‹ Complexity: The PE problem is not NP-Complete but it is at least as

hard as Graph Isomorphism Problem
E. Petrank and R.M. Roth,
Is code equivalence easy to decide?,
1997.

‹ Known Algorithms:
• The Support Splitting Algorithm for PE for F2, F3 and F4

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

N. Sendrier and D. E. Simos
The hardness of code equivalence over Fq and its application to code-based cryptography.
Post-Quantum Cryptography, volume 7932 of LNCS, 203-216, 2013.

• Computation of canonical forms for LC over Fq, with q
small.

T. Feulner,
The automorphism groups of linear codes and canonical representatives of their semilinear
isometry classes,
AMC, vol. 3 (4), p. 363-383, 2009

3

The Code Equivalence Problem of Linear Codes
‹ Complexity: The PE problem is not NP-Complete but it is at least as

hard as Graph Isomorphism Problem
E. Petrank and R.M. Roth,
Is code equivalence easy to decide?,
1997.

‹ Known Algorithms:
• The Support Splitting Algorithm for PE for F2, F3 and F4

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

N. Sendrier and D. E. Simos
The hardness of code equivalence over Fq and its application to code-based cryptography.
Post-Quantum Cryptography, volume 7932 of LNCS, 203-216, 2013.

• Computation of canonical forms for LC over Fq, with q
small.

T. Feulner,
The automorphism groups of linear codes and canonical representatives of their semilinear
isometry classes,
AMC, vol. 3 (4), p. 363-383, 2009

3

Invariants
Invariants

V is an invariant if C1 ⇠ C2) V(C1) = V(C2)

The Weight Enumerator is an invariant: C1 ⇠ C2) WC1(X) = WC2(X)

Recall that WC(X) =
nX

i=0

AiX i with Ai = | {c 2 C | wH(c) = i} |

WC1(X) = WC2(X) but C1 6⇠ C2

Consider two binary [6, 3] codes C1 and C2 with respective generator matrices:

G1 =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

!
and G2 =

 1 0 0 0 1 0
0 1 0 1 1 1
0 0 1 0 1 0

!

‹ Both codes have the same weight distribution: 1, 0, 3, 0, 3, 0, 1
‹ But they are not permutation-equivalent!

4

Invariants
Invariants

V is an invariant if C1 ⇠ C2) V(C1) = V(C2)

The Weight Enumerator is an invariant: C1 ⇠ C2) WC1(X) = WC2(X)

Recall that WC(X) =
nX

i=0

AiX i with Ai = | {c 2 C | wH(c) = i} |

WC1(X) = WC2(X) but C1 6⇠ C2

Consider two binary [6, 3] codes C1 and C2 with respective generator matrices:

G1 =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

!
and G2 =

 1 0 0 0 1 0
0 1 0 1 1 1
0 0 1 0 1 0

!

‹ Both codes have the same weight distribution: 1, 0, 3, 0, 3, 0, 1
‹ But they are not permutation-equivalent!

4

Invariants
Invariants

V is an invariant if C1 ⇠ C2) V(C1) = V(C2)

The Weight Enumerator is an invariant: C1 ⇠ C2) WC1(X) = WC2(X)

Recall that WC(X) =
nX

i=0

AiX i with Ai = | {c 2 C | wH(c) = i} |

WC1(X) = WC2(X) but C1 6⇠ C2

Consider two binary [6, 3] codes C1 and C2 with respective generator matrices:

G1 =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

!
and G2 =

 1 0 0 0 1 0
0 1 0 1 1 1
0 0 1 0 1 0

!

‹ Both codes have the same weight distribution: 1, 0, 3, 0, 3, 0, 1
‹ But they are not permutation-equivalent!

4

Punctured code
Let:

‹ C be an [n, k]q code

‹ (J, J) be a partition of {1, . . . , n}
‹ xJ the restriction of x 2 Fn

q to the
coordinates indexed by J

G =

Spans CJ

|J| n � |J|

Punctured code CJ

The words of CJ are codewords of C restricted to the
J-locations, i.e.

CJ =
�

cJ | c 2 C

5

Punctured code
Let:

‹ C be an [n, k]q code
‹ (J, J) be a partition of {1, . . . , n}

‹ xJ the restriction of x 2 Fn
q to the

coordinates indexed by J

G =

Spans CJ

|J| n � |J|

Punctured code CJ

The words of CJ are codewords of C restricted to the
J-locations, i.e.

CJ =
�

cJ | c 2 C

5

Punctured code
Let:

‹ C be an [n, k]q code
‹ (J, J) be a partition of {1, . . . , n}
‹ xJ the restriction of x 2 Fn

q to the
coordinates indexed by J

G =

Spans CJ

|J| n � |J|

Punctured code CJ

The words of CJ are codewords of C restricted to the
J-locations, i.e.

CJ =
�

cJ | c 2 C

5

Punctured code
Let:

‹ C be an [n, k]q code
‹ (J, J) be a partition of {1, . . . , n}
‹ xJ the restriction of x 2 Fn

q to the
coordinates indexed by J

G =

Spans CJ

|J| n � |J|

Punctured code CJ

The words of CJ are codewords of C restricted to the
J-locations, i.e.

CJ =
�

cJ | c 2 C

5

Punctured code
Let:

‹ C be an [n, k]q code
‹ (J, J) be a partition of {1, . . . , n}
‹ xJ the restriction of x 2 Fn

q to the
coordinates indexed by J

G =

Spans CJ

|J| n � |J|

Punctured code CJ

The words of CJ are codewords of C restricted to the
J-locations, i.e.

CJ =
�

cJ | c 2 C

5

Punctured code
Let:

‹ C be an [n, k]q code
‹ (J, J) be a partition of {1, . . . , n}
‹ xJ the restriction of x 2 Fn

q to the
coordinates indexed by J

G = Spans CJ

|J| n � |J|

Punctured code CJ

The words of CJ are codewords of C restricted to the
J-locations, i.e.

CJ =
�

cJ | c 2 C

5

Signature

Signature
S is a signature if S(C, i) = S(�(C),�(i))

Building a signature from an invariant: If V is an invariant then,

C ⇠ Ĉ =)
⇢

V(C) = V(Ĉ)

{V(Ci) | i 2 {1, . . . , n}} = {V(Ĉi) | i 2 {1, . . . , n}}

Where Ci is the punctured code C on i

6

Signature

Signature
S is a signature if S(C, i) = S(�(C),�(i))

Building a signature from an invariant: If V is an invariant then,

C ⇠ Ĉ =)
⇢

V(C) = V(Ĉ)

{V(Ci) | i 2 {1, . . . , n}} = {V(Ĉi) | i 2 {1, . . . , n}}

Where Ci is the punctured code C on i

6

Signature

Signature
S is a signature if S(C, i) = S(�(C),�(i))

Building a signature from an invariant: If V is an invariant then,

C ⇠ Ĉ =)
⇢

V(C) = V(Ĉ)

{V(Ci) | i 2 {1, . . . , n}} = {V(Ĉi) | i 2 {1, . . . , n}}
Where Ci is the punctured code C on i

6

Signature

Signature
S is a signature if S(C, i) = S(�(C),�(i))

Building a signature from an invariant: If V is an invariant then,

C ⇠ Ĉ =)
⇢

V(C) = V(Ĉ)
{V(Ci) | i 2 {1, . . . , n}} = {V(Ĉi) | i 2 {1, . . . , n}}

Where Ci is the punctured code C on i

6

Fully Discriminant Signatures

Fully Discriminant Signatures
A signature S is fully discriminant for C if:

S(C, i) 6= S(C, j) for all i 6= j

How to retrieve the permutation? Suppose that C2 = �(C1)
If S is fully discriminant for C then:

8i 2 {1, . . . , n}, 9 unique j such that S(C1, i) = S(C2, j)

=) �(i) = j

7

Fully Discriminant Signatures

Fully Discriminant Signatures
A signature S is fully discriminant for C if:

S(C, i) 6= S(C, j) for all i 6= j

How to retrieve the permutation? Suppose that C2 = �(C1)

If S is fully discriminant for C then:

8i 2 {1, . . . , n}, 9 unique j such that S(C1, i) = S(C2, j)

=) �(i) = j

7

Fully Discriminant Signatures

Fully Discriminant Signatures
A signature S is fully discriminant for C if:

S(C, i) 6= S(C, j) for all i 6= j

How to retrieve the permutation? Suppose that C2 = �(C1)
If S is fully discriminant for C then:

8i 2 {1, . . . , n}, 9 unique j such that S(C1, i) = S(C2, j)

=) �(i) = j

7

Fully Discriminant Signatures

Fully Discriminant Signatures
A signature S is fully discriminant for C if:

S(C, i) 6= S(C, j) for all i 6= j

How to retrieve the permutation? Suppose that C2 = �(C1)
If S is fully discriminant for C then:

8i 2 {1, . . . , n}, 9 unique j such that S(C1, i) = S(C2, j) =) �(i) = j

7

Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let C = {1110, 0111, 1010} and Ĉ = {0011, 1011, 1101}

8
>><

>>:

C1 = {110, 111, 010} �! WC1 = X + X 2 + X 3

C2 = {110, 011} �! WC2 = 2X 2

C3 = {110, 011, 100} �! WC3 = X + 2X 2

C4 = {111, 011, 101} �! WC4 = 2X 2 + X 3

8
>>><

>>>:

Ĉ1 = {011, 101} �! WĈ1
= 2X 2

Ĉ2 = {011, 111, 101} �! WĈ2
= 2X 2 + X 3

Ĉ3 = {001, 101, 111} �! WĈ3
= X + X 2 + X 3

Ĉ4 = {001, 101, 110} �! WĈ4
= X + 2X 2

Thus �(1) = 3 �(2) = 1 �(3) = 4 and �(4) = 2

8

Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let C = {1110, 0111, 1010} and Ĉ = {0011, 1011, 1101}
8
>><

>>:

C1 = {110, 111, 010} �! WC1 = X + X 2 + X 3

C2 = {110, 011} �! WC2 = 2X 2

C3 = {110, 011, 100} �! WC3 = X + 2X 2

C4 = {111, 011, 101} �! WC4 = 2X 2 + X 3

8
>>><

>>>:

Ĉ1 = {011, 101} �! WĈ1
= 2X 2

Ĉ2 = {011, 111, 101} �! WĈ2
= 2X 2 + X 3

Ĉ3 = {001, 101, 111} �! WĈ3
= X + X 2 + X 3

Ĉ4 = {001, 101, 110} �! WĈ4
= X + 2X 2

Thus �(1) = 3 �(2) = 1 �(3) = 4 and �(4) = 2

8

Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let C = {1110, 0111, 1010} and Ĉ = {0011, 1011, 1101}
8
>><

>>:

C1 = {110, 111, 010} �! WC1 = X + X 2 + X 3

C2 = {110, 011} �! WC2 = 2X 2

C3 = {110, 011, 100} �! WC3 = X + 2X 2

C4 = {111, 011, 101} �! WC4 = 2X 2 + X 3

8
>>><

>>>:

Ĉ1 = {011, 101} �! WĈ1
= 2X 2

Ĉ2 = {011, 111, 101} �! WĈ2
= 2X 2 + X 3

Ĉ3 = {001, 101, 111} �! WĈ3
= X + X 2 + X 3

Ĉ4 = {001, 101, 110} �! WĈ4
= X + 2X 2

Thus �(1) = 3 �(2) = 1 �(3) = 4 and �(4) = 2

8

Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let C = {1110, 0111, 1010} and Ĉ = {0011, 1011, 1101}
8
>><

>>:

C1 = {110, 111, 010} �! WC1 = X + X 2 + X 3

C2 = {110, 011} �! WC2 = 2X 2

C3 = {110, 011, 100} �! WC3 = X + 2X 2

C4 = {111, 011, 101} �! WC4 = 2X 2 + X 3

8
>>><

>>>:

Ĉ1 = {011, 101} �! WĈ1
= 2X 2

Ĉ2 = {011, 111, 101} �! WĈ2
= 2X 2 + X 3

Ĉ3 = {001, 101, 111} �! WĈ3
= X + X 2 + X 3

Ĉ4 = {001, 101, 110} �! WĈ4
= X + 2X 2

Thus �(1) = 3 �(2) = 1 �(3) = 4 and �(4) = 2
8

Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let C = {1110, 0111, 1010} and Ĉ = {0011, 1011, 1101}
8
>><

>>:

C1 = {110, 111, 010} �! WC1 = X + X 2 + X 3

C2 = {110, 011} �! WC2 = 2X 2

C3 = {110, 011, 100} �! WC3 = X + 2X 2

C4 = {111, 011, 101} �! WC4 = 2X 2 + X 3

8
>>><

>>>:

Ĉ1 = {011, 101} �! WĈ1
= 2X 2

Ĉ2 = {011, 111, 101} �! WĈ2
= 2X 2 + X 3

Ĉ3 = {001, 101, 111} �! WĈ3
= X + X 2 + X 3

Ĉ4 = {001, 101, 110} �! WĈ4
= X + 2X 2

Thus �(1) = 3 �(2) = 1 �(3) = 4 and �(4) = 2
8

Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let C = {1110, 0111, 1010} and Ĉ = {0011, 1011, 1101}
8
>><

>>:

C1 = {110, 111, 010} �! WC1 = X + X 2 + X 3

C2 = {110, 011} �! WC2 = 2X 2

C3 = {110, 011, 100} �! WC3 = X + 2X 2

C4 = {111, 011, 101} �! WC4 = 2X 2 + X 3

8
>>><

>>>:

Ĉ1 = {011, 101} �! WĈ1
= 2X 2

Ĉ2 = {011, 111, 101} �! WĈ2
= 2X 2 + X 3

Ĉ3 = {001, 101, 111} �! WĈ3
= X + X 2 + X 3

Ĉ4 = {001, 101, 110} �! WĈ4
= X + 2X 2

Thus �(1) = 3 �(2) = 1 �(3) = 4 and �(4) = 2
8

Fully Discriminant Signatures
An Example of Fully Discriminant Signature

Let C = {1110, 0111, 1010} and Ĉ = {0011, 1011, 1101}
8
>><

>>:

C1 = {110, 111, 010} �! WC1 = X + X 2 + X 3

C2 = {110, 011} �! WC2 = 2X 2

C3 = {110, 011, 100} �! WC3 = X + 2X 2

C4 = {111, 011, 101} �! WC4 = 2X 2 + X 3

8
>>><

>>>:

Ĉ1 = {011, 101} �! WĈ1
= 2X 2

Ĉ2 = {011, 111, 101} �! WĈ2
= 2X 2 + X 3

Ĉ3 = {001, 101, 111} �! WĈ3
= X + X 2 + X 3

Ĉ4 = {001, 101, 110} �! WĈ4
= X + 2X 2

Thus �(1) = 3 �(2) = 1 �(3) = 4 and �(4) = 2
8

Refined Signatures

Refined Signature
Let S be a signature. Let J be a subset of {1, . . . , n} If C ⇠ Ĉ =) CJ ⇠ ĈJ

Thus S(CJ , i) and S(ĈJ , i) give additional information.

Example of Refined Signature

C =

⇢
01101, 01011,

01110, 10101, 11110

�
and Ĉ =

⇢
10101, 00111,

10011, 11100, 11011

�

9

Refined Signatures

Refined Signature
Let S be a signature. Let J be a subset of {1, . . . , n} If C ⇠ Ĉ =) CJ ⇠ ĈJ

Thus S(CJ , i) and S(ĈJ , i) give additional information.

Example of Refined Signature

C =

⇢
01101, 01011,

01110, 10101, 11110

�
and Ĉ =

⇢
10101, 00111,

10011, 11100, 11011

�

9

Refined Signatures
Refined Signature

Let S be a signature. Let J be a subset of {1, . . . , n} If C ⇠ Ĉ =) CJ ⇠ ĈJ

Thus S(CJ , i) and S(ĈJ , i) give additional information.

Example of Refined Signature

C =

⇢
01101, 01011,

01110, 10101, 11110

�
and Ĉ =

⇢
10101, 00111,

10011, 11100, 11011

�

WC1(X) = WĈ2
(X) =) �(1) = 2

WC4(X) = WĈ4
(X) =) �(4) = 4

WC5(X) = WĈ3
(X) =) �(5) = 3

9

Refined Signatures

Refined Signature
Let S be a signature. Let J be a subset of {1, . . . , n} If C ⇠ Ĉ =) CJ ⇠ ĈJ

Thus S(CJ , i) and S(ĈJ , i) give additional information.

Example of Refined Signature

C =

⇢
01101, 01011,

01110, 10101, 11110

�
and Ĉ =

⇢
10101, 00111,

10011, 11100, 11011

�

Note that: WC2(X) = WC3(X) = WĈ1
(X) = WĈ5

(X).
Thus: positions {2, 3} in C and {1, 5} in Ĉ cannot be discriminated

9

Refined Signatures
Refined Signature

Let S be a signature. Let J be a subset of {1, . . . , n} If C ⇠ Ĉ =) CJ ⇠ ĈJ

Thus S(CJ , i) and S(ĈJ , i) give additional information.

Example of Refined Signature

C =

⇢
01101, 01011,

01110, 10101, 11110

�
and Ĉ =

⇢
10101, 00111,

10011, 11100, 11011

�

Note that: WC2(X) = WC3(X) = WĈ1
(X) = WĈ5

(X).
Thus: positions {2, 3} in C and {1, 5} in Ĉ cannot be discriminated

WC{1,2} = WĈ{2,5}
=) �({1, 2}) = {2, 5}

WC{1,3} = WĈ{2,1}
=) �({1, 3}) = {2, 1}

Thus �(2) = 5 and �(3) = 1
9

Refined Signatures
Refined Signature

Let S be a signature. Let J be a subset of {1, . . . , n} If C ⇠ Ĉ =) CJ ⇠ ĈJ

Thus S(CJ , i) and S(ĈJ , i) give additional information.

Example of Refined Signature

C =

⇢
01101, 01011,

01110, 10101, 11110

�
and Ĉ =

⇢
10101, 00111,

10011, 11100, 11011

�

Note that: WC2(X) = WC3(X) = WĈ1
(X) = WĈ5

(X).
Thus: positions {2, 3} in C and {1, 5} in Ĉ cannot be discriminated

WC{1,2} = WĈ{2,5}
=) �({1, 2}) = {2, 5}

WC{1,3} = WĈ{2,1}
=) �({1, 3}) = {2, 1}

Thus �(2) = 5 and �(3) = 1
9

Some notation

From now on, let C be a linear code of length n defined over Fq. We denote

• Its dimension by K (C) .

• Its minimum distance by d(C) .

10

Support Splitting Algorithm
The Algorithm:

Input: A signature S and two codes: C1 and C2.
1. Construct a sequence of signatures:

S0 = S,S1, . . . ,Sr

of increasing “discriminancy” such that Sr is
fully discriminant for C.

2. From Sr we retrieve � such that C2 = �(C1)

Proposal of signature: S(C, i) = WH(Ci)(X) where H(C) = C \ C?

• For binary codes C of length n and h = dim(H(C)).
The (heuristic) complexity: O

⇣
n3 + 2hn2 log(n)

⌘

• When h �! 0, Then the Algorithm runs in polynomial time.

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

11

Support Splitting Algorithm
The Algorithm:

Input: A signature S and two codes: C1 and C2.

1. Construct a sequence of signatures:

S0 = S,S1, . . . ,Sr

of increasing “discriminancy” such that Sr is
fully discriminant for C.

2. From Sr we retrieve � such that C2 = �(C1)

Proposal of signature: S(C, i) = WH(Ci)(X) where H(C) = C \ C?

• For binary codes C of length n and h = dim(H(C)).
The (heuristic) complexity: O

⇣
n3 + 2hn2 log(n)

⌘

• When h �! 0, Then the Algorithm runs in polynomial time.

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

11

Support Splitting Algorithm
The Algorithm:

Input: A signature S and two codes: C1 and C2.
1. Construct a sequence of signatures:

S0 = S,S1, . . . ,Sr

of increasing “discriminancy” such that Sr is
fully discriminant for C.

2. From Sr we retrieve � such that C2 = �(C1)

Proposal of signature: S(C, i) = WH(Ci)(X) where H(C) = C \ C?

• For binary codes C of length n and h = dim(H(C)).
The (heuristic) complexity: O

⇣
n3 + 2hn2 log(n)

⌘

• When h �! 0, Then the Algorithm runs in polynomial time.

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

11

Support Splitting Algorithm
The Algorithm:

Input: A signature S and two codes: C1 and C2.
1. Construct a sequence of signatures:

S0 = S,S1, . . . ,Sr

of increasing “discriminancy” such that Sr is
fully discriminant for C.

2. From Sr we retrieve � such that C2 = �(C1)

Proposal of signature: S(C, i) = WH(Ci)(X) where H(C) = C \ C?

• For binary codes C of length n and h = dim(H(C)).
The (heuristic) complexity: O

⇣
n3 + 2hn2 log(n)

⌘

• When h �! 0, Then the Algorithm runs in polynomial time.

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

11

Support Splitting Algorithm
The Algorithm:

Input: A signature S and two codes: C1 and C2.
1. Construct a sequence of signatures:

S0 = S,S1, . . . ,Sr

of increasing “discriminancy” such that Sr is
fully discriminant for C.

2. From Sr we retrieve � such that C2 = �(C1)

Proposal of signature: S(C, i) = WH(Ci)(X) where H(C) = C \ C?

• For binary codes C of length n and h = dim(H(C)).
The (heuristic) complexity: O

⇣
n3 + 2hn2 log(n)

⌘

• When h �! 0, Then the Algorithm runs in polynomial time.

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

11

Support Splitting Algorithm
The Algorithm:

Input: A signature S and two codes: C1 and C2.
1. Construct a sequence of signatures:

S0 = S,S1, . . . ,Sr

of increasing “discriminancy” such that Sr is
fully discriminant for C.

2. From Sr we retrieve � such that C2 = �(C1)

Proposal of signature: S(C, i) = WH(Ci)(X) where H(C) = C \ C?

• For binary codes C of length n and h = dim(H(C)).
The (heuristic) complexity: O

⇣
n3 + 2hn2 log(n)

⌘

• When h �! 0, Then the Algorithm runs in polynomial time.

N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

11

Support Splitting Algorithm
The Algorithm:

Input: A signature S and two codes: C1 and C2.
1. Construct a sequence of signatures:

S0 = S,S1, . . . ,Sr

of increasing “discriminancy” such that Sr is
fully discriminant for C.

2. From Sr we retrieve � such that C2 = �(C1)

Proposal of signature: S(C, i) = WH(Ci)(X) where H(C) = C \ C?

• For binary codes C of length n and h = dim(H(C)).
The (heuristic) complexity: O

⇣
n3 + 2hn2 log(n)

⌘

• When h �! 0, Then the Algorithm runs in polynomial time.
N. Sendrier,
Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,
IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

11

Application in Code-Based Cryptography
The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

‹ A Goppa code C = �(L, g) has :

K (C) � n � mt and d(C) � t + 1

‹ Let G
pub

2 Fk⇥n
2 be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over Fm
2 such that

k � n � mt .
2. We check the equivalence with the public code.

There are 2498.55 binary Goppa codes!!
(for n = 1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective

12

Application in Code-Based Cryptography
The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

Goppa code
Let:

‹ L = (↵1, . . . ,↵n) 2 F2m with ↵i 6= ↵j for all i 6= j .
‹ g(X) 2 F2m [X] monic separable polynomial with deg(g) = t and g(↵i) 6= 08i

�(L, g) = Altt(a,b) = (GRSt(a,b)) \ Fq

with a = L and bi =
1

g(ai)

‹ A Goppa code C = �(L, g) has :

K (C) � n � mt and d(C) � t + 1

‹ Let G
pub

2 Fk⇥n
2 be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over Fm
2 such that

k � n � mt .
2. We check the equivalence with the public code.

There are 2498.55 binary Goppa codes!!
(for n = 1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective

12

Application in Code-Based Cryptography
The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

‹ A Goppa code C = �(L, g) has :

K (C) � n � mt and d(C) � t + 1

‹ Let G
pub

2 Fk⇥n
2 be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over Fm
2 such that

k � n � mt .
2. We check the equivalence with the public code.

There are 2498.55 binary Goppa codes!!
(for n = 1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective

12

Application in Code-Based Cryptography
The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

‹ A Goppa code C = �(L, g) has :

K (C) � n � mt and d(C) � t + 1

‹ Let G
pub

2 Fk⇥n
2 be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over Fm
2 such that

k � n � mt .
2. We check the equivalence with the public code.

There are 2498.55 binary Goppa codes!!
(for n = 1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective

12

Application in Code-Based Cryptography
The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

‹ A Goppa code C = �(L, g) has :

K (C) � n � mt and d(C) � t + 1

‹ Let G
pub

2 Fk⇥n
2 be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over Fm
2 such that

k � n � mt .

2. We check the equivalence with the public code.
There are 2498.55 binary Goppa codes!!
(for n = 1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective

12

Application in Code-Based Cryptography
The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

‹ A Goppa code C = �(L, g) has :

K (C) � n � mt and d(C) � t + 1

‹ Let G
pub

2 Fk⇥n
2 be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over Fm
2 such that

k � n � mt .
2. We check the equivalence with the public code.

There are 2498.55 binary Goppa codes!!
(for n = 1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective

12

Application in Code-Based Cryptography
The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

‹ A Goppa code C = �(L, g) has :

K (C) � n � mt and d(C) � t + 1

‹ Let G
pub

2 Fk⇥n
2 be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over Fm
2 such that

k � n � mt .
2. We check the equivalence with the public code.

There are 2498.55 binary Goppa codes!!
(for n = 1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective

12

Application in Code-Based Cryptography
The public key of the original McEliece scheme is a randomly permuted
binary Goppa code.

‹ A Goppa code C = �(L, g) has :

K (C) � n � mt and d(C) � t + 1

‹ Let G
pub

2 Fk⇥n
2 be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over Fm
2 such that

k � n � mt .
2. We check the equivalence with the public code.

There are 2498.55 binary Goppa codes!!
(for n = 1024 and t = 50)

Is necessary to use a large family of codes
to make this attack ineffective

12

4. Key Attacks

1. Introduction
2. Support Splitting Algorithm
3. Distinguisher for GRS codes
4. Attack against subcodes of GRS codes
5. Error-Correcting Pairs
6. Attack against GRS codes
7. Attack against Reed-Muller codes
8. Attack against Algebraic Geometry codes
9. Goppa codes still resist

I. Márquez-Corbella CODE-BASED CRYPTOGRAPHY

