Code-Based Cryptography

- 1. Error-Correcting Codes and Cryptography
- 2. McEliece Cryptosystem
- 3. Message Attacks (ISD)
- 4. Key Attacks
- 5. Other Cryptographic Constructions Relying on Coding Theory

4. Key Attacks

- 1. Introduction
- 2. Support Splitting Algorithm
- 3. Distinguisher for GRS codes
- 4. Attack against subcodes of GRS codes
- 5. Error-Correcting Pairs
- 6. Attack against GRS codes
- 7. Attack against Reed-Muller codes
- 8. Attack against Algebraic Geometry codes
- 9. Goppa codes still resist

Semilinear Code Equivalence (SLE)

$$\mathcal{C}_{1} \overset{\text{SLE}}{\sim} \mathcal{C}_{2} \iff \exists \phi : \mathcal{C}_{2} = \phi(\mathcal{C}_{1}) \\ \text{with } \phi = (\underbrace{\sigma \in S_{n}}_{\text{Permutation}}, \underbrace{\lambda = (\lambda_{1}, \dots, \lambda_{n}) \in (\mathbb{F}_{q}^{*})^{n}}_{Scalar}, \underbrace{\alpha \in \text{Aut}(\mathbb{F}_{q})}_{\text{Automorphism}})$$

Permutation Code Equivalence (PE) $C_1 \sim C_2 \iff \exists \underbrace{\sigma \in S_n}_{Permutation} : C_2 = \sigma(C_1) = \{\sigma(\mathbf{x}) \mid \mathbf{x} \in C\}$

Permutation Code Equivalence (PE)

$$\mathcal{C}_1 \sim \mathcal{C}_2 \iff \exists \underbrace{\sigma \in S_n}_{\text{Permutation}} : \mathcal{C}_2 = \sigma(\mathcal{C}_1) = \{\sigma(\mathbf{X}) \mid \mathbf{X} \in \mathcal{C}\}$$

The Code Equivalence Problem

INPUT: Two $[n, k]_q$ linear codes: C_1 and C_2

The Code Equivalence Problem

<u>INPUT</u>: Two $[n, k]_q$ linear codes: C_1 and C_2 **<u>OUTPUT</u>**:

The Code Equivalence Problem

INPUT: Two $[n, k]_q$ linear codes: C_1 and C_2 **OUTPUT:** (Decision): Are $C_1 \sim C_2$?

The Code Equivalence Problem

INPUT: Two $[n, k]_q$ linear codes: C_1 and C_2 **OUTPUT:** (Decision): Are $C_1 \sim C_2$? (Computational): If $C_1 \sim C_2$. Find $\sigma \in S_n$ such that $C_2 = \sigma(C_1)$

→ Complexity: The PE problem is not NP-Complete but it is at least as hard as Graph Isomorphism Problem

E. Petrank and R.M. Roth,

Is code equivalence easy to decide?, 1997.

→ Complexity: The PE problem is not NP-Complete but it is at least as hard as Graph Isomorphism Problem

E. Petrank and R.M. Roth,

Is code equivalence easy to decide?, 1997.

→ Known Algorithms:

• The Support Splitting Algorithm for PE for $\mathbb{F}_2,\,\mathbb{F}_3$ and \mathbb{F}_4

N. Sendrier,

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm, IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

N. Sendrier and D. E. Simos

The hardness of code equivalence over \mathbb{F}_q and its application to code-based cryptography. Post-Quantum Cryptography, volume 7932 of LNCS, 203-216, 2013.

→ Complexity: The PE problem is not NP-Complete but it is at least as hard as Graph Isomorphism Problem

E. Petrank and R.M. Roth,

Is code equivalence easy to decide?, 1997.

→ Known Algorithms:

• The Support Splitting Algorithm for PE for $\mathbb{F}_2,\,\mathbb{F}_3$ and \mathbb{F}_4

N. Sendrier,

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm, IEEE Trans. on Inf. Theory, vol. 46(4), 2000.

N. Sendrier and D. E. Simos

The hardness of code equivalence over \mathbb{F}_q and its application to code-based cryptography. Post-Quantum Cryptography, volume 7932 of LNCS, 203-216, 2013.

• Computation of canonical forms for LC over \mathbb{F}_q , with q small.

T. Feulner,

The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes, AMC, vol. 3 (4), p. 363-383, 2009

Invariants

Invariants

$$\mathcal{V}$$
 is an **invariant** if $\mathcal{C}_1 \sim \mathcal{C}_2 \Rightarrow \mathcal{V}(\mathcal{C}_1) = \mathcal{V}(\mathcal{C}_2)$

Invariants

Invariants

$$\mathcal V$$
 is an invariant if $\mathcal C_1\sim\mathcal C_2\Rightarrow\mathcal V(\mathcal C_1)=\mathcal V(\mathcal C_2)$

The Weight Enumerator is an invariant: $C_1 \sim C_2 \Rightarrow W_{C_1}(X) = W_{C_2}(X)$ Recall that $W_{\mathcal{C}}(X) = \sum_{i=0}^n A_i X^i$ with $A_i = |\{\mathbf{c} \in \mathcal{C} \mid w_H(\mathbf{c}) = i\}|$

Invariants

4

Invariants

$$\mathcal{V} \text{ is an invariant if } \mathcal{C}_1 \sim \mathcal{C}_2 \Rightarrow \mathcal{V}(\mathcal{C}_1) = \mathcal{V}(\mathcal{C}_2)$$

The Weight Enumerator is an invariant: $C_1 \sim C_2 \Rightarrow W_{C_1}(X) = W_{C_2}(X)$ Recall that $W_{\mathcal{C}}(X) = \sum_{i=0}^n A_i X^i$ with $A_i = |\{\mathbf{c} \in \mathcal{C} \mid w_H(\mathbf{c}) = i\}|$

$\mathcal{W}_{\mathcal{C}_1}(X) = \mathcal{W}_{\mathcal{C}_2}(X)$ but $\mathcal{C}_1 ot\sim \mathcal{C}_2$

Consider two binary [6,3] codes C_1 and C_2 with respective generator matrices:

 \rightarrow Both codes have the same weight distribution: 1, 0, 3, 0, 3, 0, 1

→ But they are not permutation-equivalent!

Let:

→ C be an $[n, k]_q$ code

Let:

- → C be an $[n, k]_q$ code
- → (J, \overline{J}) be a partition of $\{1, ..., n\}$

Let:

- → C be an $[n, k]_q$ code
- → (J, \overline{J}) be a partition of $\{1, ..., n\}$
- → \mathbf{x}_J the **restriction** of $\mathbf{x} \in \mathbb{F}_q^n$ to the coordinates indexed by J

Let:

- → C be an $[n, k]_q$ code
- → (J, \overline{J}) be a partition of $\{1, ..., n\}$
- → \mathbf{x}_J the **restriction** of $\mathbf{x} \in \mathbb{F}_q^n$ to the coordinates indexed by J

Punctured code C_J

The words of \mathcal{C}_J are codewords of \mathcal{C} restricted to the \overline{J} -locations, i.e.

$$\mathcal{C}_J = \left\{ \mathbf{c}_{\overline{J}} \mid \mathbf{c} \in \mathcal{C}
ight\}$$

Let:

- → C be an $[n, k]_q$ code
- → (J, \overline{J}) be a partition of $\{1, ..., n\}$
- → \mathbf{x}_J the **restriction** of $\mathbf{x} \in \mathbb{F}_q^n$ to the coordinates indexed by J

Punctured code C_J

The words of \mathcal{C}_J are codewords of \mathcal{C} restricted to the \overline{J} -locations, i.e.

$$\mathcal{C}_J = \left\{ \mathbf{c}_{\overline{J}} \mid \mathbf{c} \in \mathcal{C}
ight\}$$

Let:

- → C be an $[n, k]_q$ code
- → (J, \overline{J}) be a partition of $\{1, ..., n\}$
- → \mathbf{x}_J the **restriction** of $\mathbf{x} \in \mathbb{F}_q^n$ to the coordinates indexed by J

Punctured code C_J

The words of \mathcal{C}_J are codewords of \mathcal{C} restricted to the \overline{J} -locations, i.e.

$$\mathcal{C}_J = \left\{ \mathbf{c}_{\overline{J}} \mid \mathbf{c} \in \mathcal{C}
ight\}$$

S is a **signature** if
$$S(C, i) = S(\sigma(C), \sigma(i))$$

$$S$$
 is a **signature** if $S(C, i) = S(\sigma(C), \sigma(i))$

Building a signature from an invariant: If \mathcal{V} is an invariant then,

$$S$$
 is a **signature** if $S(C, i) = S(\sigma(C), \sigma(i))$

Building a signature from an invariant: If \mathcal{V} is an invariant then,

$$\mathcal{C}\sim\hat{\mathcal{C}} \implies \left\{ egin{array}{c} \mathcal{V}(\mathcal{C})=\mathcal{V}(\hat{\mathcal{C}}) \ \end{array}
ight.$$

$$S$$
 is a **signature** if $S(C, i) = S(\sigma(C), \sigma(i))$

Building a signature from an invariant: If \mathcal{V} is an invariant then,

$$\mathcal{C} \sim \hat{\mathcal{C}} \implies \begin{cases} \mathcal{V}(\mathcal{C}) = \mathcal{V}(\hat{\mathcal{C}}) \\ \{\mathcal{V}(\mathcal{C}_i) \mid i \in \{1, \dots, n\}\} = \{\mathcal{V}(\hat{\mathcal{C}}_i) \mid i \in \{1, \dots, n\}\} \end{cases}$$

Where C_i is the punctured code C on i

Fully Discriminant Signatures

A signature \mathcal{S} is **fully discriminant** for \mathcal{C} if:

 $\mathcal{S}(\mathcal{C},i) \neq \mathcal{S}(\mathcal{C},j)$ for all $i \neq j$

Fully Discriminant Signatures

A signature S is **fully discriminant** for C if:

 $\mathcal{S}(\mathcal{C},i) \neq \mathcal{S}(\mathcal{C},j)$ for all $i \neq j$

How to retrieve the permutation? Suppose that $C_2 = \sigma(C_1)$

Fully Discriminant Signatures

A signature S is **fully discriminant** for C if:

 $\mathcal{S}(\mathcal{C},i) \neq \mathcal{S}(\mathcal{C},j)$ for all $i \neq j$

How to retrieve the permutation? Suppose that $C_2 = \sigma(C_1)$ If S is **fully discriminant** for C then:

 $\forall i \in \{1, \ldots, n\}, \exists$ unique *j* such that $\mathcal{S}(\mathcal{C}_1, i) = \mathcal{S}(\mathcal{C}_2, j)$

Fully Discriminant Signatures

A signature S is **fully discriminant** for C if:

 $\mathcal{S}(\mathcal{C},i) \neq \mathcal{S}(\mathcal{C},j)$ for all $i \neq j$

How to retrieve the permutation? Suppose that $C_2 = \sigma(C_1)$ If *S* is **fully discriminant** for *C* then:

 $\forall i \in \{1, \dots, n\}, \exists \text{ unique } j \text{ such that } \mathcal{S}(\mathcal{C}_1, i) = \mathcal{S}(\mathcal{C}_2, j) \Longrightarrow \sigma(i) = j$

An Example of Fully Discriminant Signature

Let $C = \{1110, 0111, 1010\}$ and $\hat{C} = \{0011, 1011, 1101\}$

An Example of Fully Discriminant Signature

Let $C = \{1110, 0111, 1010\}$ and $\hat{C} = \{0011, 1011, 1101\}$

$$\begin{cases} \mathcal{C}_{1} = \{110, 111, 010\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{1}} = X + X^{2} + X^{3} \\ \mathcal{C}_{2} = \{110, 011\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{2}} = 2X^{2} \\ \mathcal{C}_{3} = \{110, 011, 100\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{3}} = X + 2X^{2} \\ \mathcal{C}_{4} = \{111, 011, 101\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{4}} = 2X^{2} + X^{3} \end{cases}$$

An Example of Fully Discriminant Signature

Let $C = \{1110, 0111, 1010\}$ and $\hat{C} = \{0011, 1011, 1101\}$

$$\begin{cases} \mathcal{C}_{1} = \{110, 111, 010\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{1}} = X + X^{2} + X^{3} \\ \mathcal{C}_{2} = \{110, 011\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{2}} = 2X^{2} \\ \mathcal{C}_{3} = \{110, 011, 100\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{3}} = X + 2X^{2} \\ \mathcal{C}_{4} = \{111, 011, 101\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{4}} = 2X^{2} + X^{3} \end{cases}$$

$$\begin{cases} \hat{\mathcal{C}}_1 = \{011, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_1} = 2X^2 \\ \hat{\mathcal{C}}_2 = \{011, 111, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_2} = 2X^2 + X^3 \\ \hat{\mathcal{C}}_3 = \{001, 101, 111\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_3} = X + X^2 + X^3 \\ \hat{\mathcal{C}}_4 = \{001, 101, 110\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_4} = X + 2X^2 \end{cases}$$

An Example of Fully Discriminant Signature

Let $C = \{1110, 0111, 1010\}$ and $\hat{C} = \{0011, 1011, 1101\}$

$$\begin{cases} \mathcal{C}_{1} = \{110, 111, 010\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{1}} = X + X^{2} + X^{3} \\ \mathcal{C}_{2} = \{110, 011\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{2}} = 2X^{2} \\ \mathcal{C}_{3} = \{110, 011, 100\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{3}} = X + 2X^{2} \\ \mathcal{C}_{4} = \{111, 011, 101\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{4}} = 2X^{2} + X^{3} \end{cases}$$

$$\begin{cases} \hat{\mathcal{C}}_1 = \{011, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_1} = 2X^2 \\ \hat{\mathcal{C}}_2 = \{011, 111, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_2} = 2X^2 + X^3 \\ \hat{\mathcal{C}}_3 = \{001, 101, 111\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_3} = X + X^2 + X^3 \\ \hat{\mathcal{C}}_4 = \{001, 101, 110\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_4} = X + 2X^2 \end{cases}$$

An Example of Fully Discriminant Signature

Let $C = \{1110, 0111, 1010\}$ and $\hat{C} = \{0011, 1011, 1101\}$

$$\begin{cases} \mathcal{C}_{1} = \{110, 111, 010\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{1}} = X + X^{2} + X^{3} \\ \mathcal{C}_{2} = \{110, 011\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{2}} = 2X^{2} \\ \mathcal{C}_{3} = \{110, 011, 100\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{3}} = X + 2X^{2} \\ \mathcal{C}_{4} = \{111, 011, 101\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{4}} = 2X^{2} + X^{3} \end{cases}$$

$$\begin{cases} \hat{\mathcal{C}}_{1} = \{011, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_{1}} = 2X^{2} \\ \hat{\mathcal{C}}_{2} = \{011, 111, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_{2}} = 2X^{2} + X^{3} \\ \hat{\mathcal{C}}_{3} = \{001, 101, 111\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_{3}} = X + X^{2} + X^{3} \\ \hat{\mathcal{C}}_{4} = \{001, 101, 110\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_{4}} = X + 2X^{2} \end{cases}$$

An Example of Fully Discriminant Signature

Let $C = \{1110, 0111, 1010\}$ and $\hat{C} = \{0011, 1011, 1101\}$

$$\begin{cases} \mathcal{C}_{1} = \{110, 111, 010\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{1}} = X + X^{2} + X^{3} \\ \mathcal{C}_{2} = \{110, 011\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{2}} = 2X^{2} \\ \mathcal{C}_{3} = \{110, 011, 100\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{3}} = X + 2X^{2} \\ \mathcal{C}_{4} = \{111, 011, 101\} & \longrightarrow & \mathcal{W}_{\mathcal{C}_{4}} = 2X^{2} + X^{3} \end{cases}$$

$$\begin{cases} \hat{\mathcal{C}}_1 = \{011, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_1} = 2X^2 \\ \hat{\mathcal{C}}_2 = \{011, 111, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_2} = 2X^2 + X^3 \\ \hat{\mathcal{C}}_3 = \{001, 101, 111\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_3} = X + X^2 + X^3 \\ \hat{\mathcal{C}}_4 = \{001, 101, 110\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_4} = X + 2X^2 \end{cases}$$

An Example of Fully Discriminant Signature

Let $C = \{1110, 0111, 1010\}$ and $\hat{C} = \{0011, 1011, 1101\}$

$$\begin{cases} C_1 = \{110, 111, 010\} & \longrightarrow & \mathcal{W}_{C_1} = X + X^2 + X^3 \\ C_2 = \{110, 011\} & \longrightarrow & \mathcal{W}_{C_2} = 2X^2 \\ C_3 = \{110, 011, 100\} & \longrightarrow & \mathcal{W}_{C_3} = X + 2X^2 \\ C_4 = \{111, 011, 101\} & \longrightarrow & \mathcal{W}_{C_4} = 2X^2 + X^3 \end{cases}$$

$$\begin{cases} \hat{\mathcal{C}}_1 = \{011, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_1} = 2X^2 \\ \hat{\mathcal{C}}_2 = \{011, 111, 101\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_2} = 2X^2 + X^3 \\ \hat{\mathcal{C}}_3 = \{001, 101, 111\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_3} = X + X^2 + X^3 \\ \hat{\mathcal{C}}_4 = \{001, 101, 110\} & \longrightarrow & \mathcal{W}_{\hat{\mathcal{C}}_4} = X + 2X^2 \end{cases}$$

Refined Signature

Let S be a signature. Let J be a subset of $\{1, \ldots, n\}$ If $C \sim \hat{C} \implies C_J \sim \hat{C}_J$ Thus $S(C_J, i)$ and $S(\hat{C}_J, i)$ give additional information.

Refined Signature

Let S be a signature. Let J be a subset of $\{1, \ldots, n\}$ If $C \sim \hat{C} \implies C_J \sim \hat{C}_J$ Thus $S(C_J, i)$ and $S(\hat{C}_J, i)$ give additional information.

Example of Refined Signature

$$\mathcal{C} = \left\{ \begin{array}{c} 01101, 01011, \\ 01110, 10101, 11110 \end{array} \right\} \quad \text{and} \quad \hat{\mathcal{C}} = \left\{ \begin{array}{c} 10101, 00111, \\ 10011, 11100, 11011 \end{array} \right\}$$

Refined Signature

Let S be a signature. Let J be a subset of $\{1, \ldots, n\}$ If $C \sim \hat{C} \implies C_J \sim \hat{C}_J$ Thus $S(C_J, i)$ and $S(\hat{C}_J, i)$ give additional information.

Example of Refined Signature

$$\mathcal{C} = \left\{ \begin{array}{c} 01101, 01011, \\ 01110, 10101, 11110 \end{array} \right\} \text{ and } \hat{\mathcal{C}} = \left\{ \begin{array}{c} 10101, 00111, \\ 10011, 11100, 11011 \end{array} \right\}$$
$$\mathcal{W}_{\mathcal{C}_1}(X) = \mathcal{W}_{\hat{\mathcal{C}}_2}(X) \implies \sigma(1) = 2$$
$$\mathcal{W}_{\mathcal{C}_4}(X) = \mathcal{W}_{\hat{\mathcal{C}}_4}(X) \implies \sigma(4) = 4$$
$$\mathcal{W}_{\mathcal{C}_5}(X) = \mathcal{W}_{\hat{\mathcal{C}}_3}(X) \implies \sigma(5) = 3$$

Refined Signature

Let S be a signature. Let J be a subset of $\{1, \ldots, n\}$ If $C \sim \hat{C} \implies C_J \sim \hat{C}_J$ Thus $S(C_J, i)$ and $S(\hat{C}_J, i)$ give additional information.

Example of Refined Signature

 $\mathcal{C} = \left\{ \begin{array}{c} 01101, 01011, \\ 01110, 10101, 11110 \end{array} \right\} \text{ and } \hat{\mathcal{C}} = \left\{ \begin{array}{c} 10101, 00111, \\ 10011, 11100, 11011 \end{array} \right\}$

Note that: $\mathcal{W}_{\mathcal{C}_2}(X) = \mathcal{W}_{\mathcal{C}_3}(X) = \mathcal{W}_{\hat{\mathcal{C}}_1}(X) = \mathcal{W}_{\hat{\mathcal{C}}_5}(X)$. Thus: positions {2,3} in \mathcal{C} and {1,5} in $\hat{\mathcal{C}}$ cannot be discriminated

Refined Signature

Let S be a signature. Let J be a subset of $\{1, \ldots, n\}$ If $C \sim \hat{C} \implies C_J \sim \hat{C}_J$ Thus $S(C_J, i)$ and $S(\hat{C}_J, i)$ give additional information.

Example of Refined Signature

$$\mathcal{C} = \left\{ \begin{array}{c} 01101, 01011, \\ 01110, 10101, 11110 \end{array} \right\} \text{ and } \hat{\mathcal{C}} = \left\{ \begin{array}{c} 10101, 00111, \\ 10011, 11100, 11011 \end{array} \right.$$

Note that: $\mathcal{W}_{\mathcal{C}_2}(X) = \mathcal{W}_{\mathcal{C}_3}(X) = \mathcal{W}_{\hat{\mathcal{C}}_1}(X) = \mathcal{W}_{\hat{\mathcal{C}}_5}(X)$. Thus: positions {2,3} in \mathcal{C} and {1,5} in $\hat{\mathcal{C}}$ cannot be discriminated

$$\begin{aligned} &\mathcal{W}_{\mathcal{C}_{\{1,2\}}} = \mathcal{W}_{\hat{\mathcal{C}}_{\{2,5\}}} &\Longrightarrow \sigma(\{1,2\}) = \{2,5\} \\ &\mathcal{W}_{\mathcal{C}_{\{1,3\}}} = \mathcal{W}_{\hat{\mathcal{C}}_{\{2,1\}}} &\Longrightarrow \sigma(\{1,3\}) = \{2,1\} \end{aligned}$$

Thus $\sigma(2) = 5$ and $\sigma(3) = 1$

Refined Signature

Let S be a signature. Let J be a subset of $\{1, \ldots, n\}$ If $C \sim \hat{C} \implies C_J \sim \hat{C}_J$ Thus $S(C_J, i)$ and $S(\hat{C}_J, i)$ give additional information.

Example of Refined Signature

$$\mathcal{C} = \left\{ \begin{array}{c} 01101, 01011, \\ 01110, 10101, 11110 \end{array} \right\} \text{ and } \hat{\mathcal{C}} = \left\{ \begin{array}{c} 10101, 00111, \\ 10011, 11100, 11011 \end{array} \right.$$

Note that: $\mathcal{W}_{\mathcal{C}_2}(X) = \mathcal{W}_{\mathcal{C}_3}(X) = \mathcal{W}_{\hat{\mathcal{C}}_1}(X) = \mathcal{W}_{\hat{\mathcal{C}}_5}(X)$. Thus: positions {2,3} in \mathcal{C} and {1,5} in $\hat{\mathcal{C}}$ cannot be discriminated

$$\begin{aligned} &\mathcal{W}_{\mathcal{C}_{\{1,2\}}} = \mathcal{W}_{\hat{\mathcal{C}}_{\{2,5\}}} &\Longrightarrow \sigma(\{1,2\}) = \{2,5\} \\ &\mathcal{W}_{\mathcal{C}_{\{1,3\}}} = \mathcal{W}_{\hat{\mathcal{C}}_{\{2,1\}}} &\Longrightarrow \sigma(\{1,3\}) = \{2,1\} \end{aligned}$$

Thus $\sigma(2) = 5$ and $\sigma(3) = 1$

Some notation

From now on, let C be a linear code of length *n* defined over \mathbb{F}_q . We denote

- Its dimension by $K(\mathcal{C})$.
- Its minimum distance by $d(\mathcal{C})$.

N. Sendrier.

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,

Input: A signature S and two codes: C_1 and C_2 .

N. Sendrier.

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,

Input: A signature S and two codes: C_1 and C_2 .

1. Construct a sequence of signatures:

 $\mathcal{S}_0 = \mathcal{S}, \mathcal{S}_1, \dots, \mathcal{S}_r$

of increasing "discriminancy" such that S_r is **fully discriminant** for C.

N. Sendrier.

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,

Input: A signature S and two codes: C_1 and C_2 .

1. Construct a sequence of signatures:

 $\mathcal{S}_0 = \mathcal{S}, \mathcal{S}_1, \dots, \mathcal{S}_r$

of increasing "discriminancy" such that S_r is **fully discriminant** for C.

2. From S_r we retrieve σ such that $C_2 = \sigma(C_1)$

N. Sendrier.

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,

Input: A signature S and two codes: C_1 and C_2 .

1. Construct a sequence of signatures:

 $\mathcal{S}_0 = \mathcal{S}, \mathcal{S}_1, \dots, \mathcal{S}_r$

of increasing "discriminancy" such that S_r is **fully discriminant** for C.

2. From S_r we retrieve σ such that $C_2 = \sigma(C_1)$

Proposal of signature: $S(C, i) = W_{\mathcal{H}(C_i)}(X)$ where $\mathcal{H}(C) = C \cap C^{\perp}$

N. Sendrier.

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,

Input: A signature S and two codes: C_1 and C_2 .

1. Construct a sequence of signatures:

 $\mathcal{S}_0 = \mathcal{S}, \mathcal{S}_1, \dots, \mathcal{S}_r$

of increasing "discriminancy" such that S_r is **fully discriminant** for C.

2. From S_r we retrieve σ such that $C_2 = \sigma(C_1)$

Proposal of signature: $S(C, i) = W_{\mathcal{H}(C_i)}(X)$ where $\mathcal{H}(C) = C \cap C^{\perp}$

• For binary codes C of length n and $h = \dim(\mathcal{H}(C))$. The (heuristic) complexity: $O\left(n^3 + 2^h n^2 \log(n)\right)$

N. Sendrier,

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,

Input: A signature S and two codes: C_1 and C_2 .

1. Construct a sequence of signatures:

 $\mathcal{S}_0 = \mathcal{S}, \mathcal{S}_1, \dots, \mathcal{S}_r$

of increasing "discriminancy" such that S_r is **fully discriminant** for C.

2. From S_r we retrieve σ such that $C_2 = \sigma(C_1)$

Proposal of signature: $S(C, i) = W_{\mathcal{H}(C_i)}(X)$ where $\mathcal{H}(C) = C \cap C^{\perp}$

- For binary codes C of length n and $h = \dim(\mathcal{H}(C))$. The (heuristic) complexity: $O\left(n^3 + 2^h n^2 \log(n)\right)$
- When $h \rightarrow 0$, Then the Algorithm runs in polynomial time.

N. Sendrier,

Finding the permutation between equivalent linear codes: The Support Splitting Algorithm,

The public key of the original McEliece scheme is a **randomly permuted binary Goppa code**.

The public key of the original McEliece scheme is a **randomly permuted binary Goppa code**.

Goppa code

Let:

→
$$L = (\alpha_1, ..., \alpha_n) \in \mathbb{F}_{2^m}$$
 with $\alpha_i \neq \alpha_j$ for all $i \neq j$.

→ $g(X) \in \mathbb{F}_{2^m}[X]$ monic separable polynomial with deg(g) = t and $g(\alpha_i) \neq 0 \forall i$

$$\Gamma(L,g) = \operatorname{Alt}_t(\mathbf{a},\mathbf{b}) = (\operatorname{GRS}_t(\mathbf{a},\mathbf{b})) \cap \mathbb{F}_q$$

with $\mathbf{a} = L$ and $b_i = rac{1}{g(a_i)}$

The public key of the original McEliece scheme is a **randomly permuted binary Goppa code**.

→ A Goppa code $C = \Gamma(L, g)$ has :

 $K(\mathcal{C}) \ge n - mt$ and $d(\mathcal{C}) \ge t + 1$

The public key of the original McEliece scheme is a **randomly permuted binary Goppa code**.

→ A Goppa code $C = \Gamma(L, g)$ has :

 $K(\mathcal{C}) \ge n - mt$ and $d(\mathcal{C}) \ge t + 1$

→ Let $G_{\text{pub}} \in \mathbb{F}_2^{k \times n}$ be the public key of the McEliece scheme.

The public key of the original McEliece scheme is a **randomly permuted binary Goppa code**.

→ A Goppa code $C = \Gamma(L, g)$ has :

 $K(\mathcal{C}) \ge n - mt$ and $d(\mathcal{C}) \ge t + 1$

→ Let $G_{pub} \in \mathbb{F}_2^{k \times n}$ be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over \mathbb{F}_2^m such that $k \ge n - mt$.

The public key of the original McEliece scheme is a **randomly permuted binary Goppa code**.

→ A Goppa code $C = \Gamma(L, g)$ has :

 $K(\mathcal{C}) \ge n - mt$ and $d(\mathcal{C}) \ge t + 1$

→ Let $G_{\text{pub}} \in \mathbb{F}_2^{k \times n}$ be the public key of the McEliece scheme.

- 1. We enumerate all polynomials g of degree t over \mathbb{F}_2^m such that $k \ge n mt$.
- 2. We check the equivalence with the **public code**.

The public key of the original McEliece scheme is a **randomly permuted binary Goppa code**.

→ A Goppa code $C = \Gamma(L, g)$ has :

 $K(\mathcal{C}) \ge n - mt$ and $d(\mathcal{C}) \ge t + 1$

→ Let $G_{\text{pub}} \in \mathbb{F}_2^{k \times n}$ be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over \mathbb{F}_2^m such that $k \ge n - mt$.

2. We check the equivalence with the **public code**. There are $2^{498.55}$ binary Goppa codes!! (for n = 1024 and t = 50)

The public key of the original McEliece scheme is a **randomly permuted binary Goppa code**.

→ A Goppa code $C = \Gamma(L, g)$ has :

 $K(\mathcal{C}) \ge n - mt$ and $d(\mathcal{C}) \ge t + 1$

→ Let $G_{\text{pub}} \in \mathbb{F}_2^{k \times n}$ be the public key of the McEliece scheme.

1. We enumerate all polynomials g of degree t over \mathbb{F}_2^m such that $k \ge n - mt$.

2. We check the equivalence with the **public code**. There are $2^{498.55}$ binary Goppa codes!! (for n = 1024 and t = 50)

4. Key Attacks

- 1. Introduction
- 2. Support Splitting Algorithm
- 3. Distinguisher for GRS codes
- 4. Attack against subcodes of GRS codes
- 5. Error-Correcting Pairs
- 6. Attack against GRS codes
- 7. Attack against Reed-Muller codes
- 8. Attack against Algebraic Geometry codes
- 9. Goppa codes still resist