Code-Based Cryptography

Key Attacks

Code-Based Cryptography

- 1. Error-Correcting Codes and Cryptography
- 2. McEliece Cryptosystem
- 3. Message Attacks (ISD)
- 4. Key Attacks
- 5. Other Cryptographic Constructions Relying on Coding Theory

4. Key Attacks

- 1. Introduction
- 2. Support Splitting Algorithm
- 3. Distinguisher for GRS codes
- 4. Attack against subcodes of GRS codes
- 5. Error-Correcting Pairs
- 6. Attack against GRS codes
- 7. Attack against Reed-Muller codes
- 8. Attack against Algebraic Geometry codes
- 9. Goppa codes still resist

Consider (F) family of codes

Key Generation Algorithm:

- 1. $G \in \mathbb{F}_q^{k \times n}$ a generator matrix for $C \in \mathcal{F}$
- 2. $A_{\mathcal{C}}$ an "Efficient" decoding algorithm for \mathcal{C} which corrects up to t errors.

Public Key: $\mathcal{K}_{\text{pub}} = (G, t)$ Private Key: $\mathcal{K}_{\text{secret}} = (A_C)$

Key Generation Algorithm:

- 1. $G \in \mathbb{F}_q^{k \times n}$ a generator matrix for $C \in \mathcal{F}$
- 2. A_C an "Efficient" decoding algorithm for C which corrects up to t errors.

Public Key: $\mathcal{K}_{\text{pub}} = (G, t)$ Private Key: $\mathcal{K}_{\text{secret}} = (A_C)$

Parameters	Key size	Security level
$[1024, 524, 101]_2$	67 ko	2 ⁶²
[2048, 1608, 48] ₂	412 ko	2 ⁹⁶

Encryption Algorithm:

Encrypt a message $\mathbf{m} \in \mathbb{F}_q^k$ as

$$\mathsf{ENCRYPT}(\mathbf{m}) = \mathbf{m}\mathbf{G} + \mathbf{e} = \mathbf{y}$$

where \mathbf{e} is a random error vector of weight at most \mathbf{t} .

Encryption Algorithm:

Encrypt a message $\mathbf{m} \in \mathbb{F}_q^k$ as

$$\mathsf{ENCRYPT}(\mathbf{m}) = \mathbf{m}\mathbf{G} + \mathbf{e} = \mathbf{y}$$

where \mathbf{e} is a random error vector of weight at most \mathbf{t} .

Decryption Algorithm:

Using \mathcal{K}_{secret} , the receiver obtain **m**.

$$\mathsf{DECRYPT}(\boldsymbol{y}) = \boldsymbol{\mathcal{A}_{\mathcal{C}}}(\boldsymbol{y}) = \boldsymbol{m}$$

Which code Family? - GRS codes

H. Niederreiter.

Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, 15(2):159—166, 1986.

Parameters	Key size	Security level
[256, 128, 129] ₂₅₆	67 ko	2 ⁹⁵

Which code Family? - GRS codes

Generalized Reed-Solomon codes

H Niederreiter

Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, 15(2):159-166, 1986.

Parameters	Key size	Security level
$[256, 128, 129]_{256}$	67 ko	2 ⁹⁵

Attack against this proposal:

V. M. Sidelnikov and S. O. Shestakov.

On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Math. Appl., 2:439-444, 1992.

Which code Family? - Subcodes of GRS codes

Subcodes of GRS codes

T. Berger and P. Loidreau.

How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr., 35:63-79, 2005.

Which code Family? - Subcodes of GRS codes

Subcodes of GRS codes

T. Berger and P. Loidreau.

How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr., 35:63—79, 2005.

Attack against this proposal:

C. Wieschebrink.

Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes.

In Post-Quantum Cryptography, volume 6061 of Lecture Notes in Comput. Sci., pages 61–72, 2010.

Which code Family? - Reed-Muller codes

V. Sidelnikov.

A public-key cryptosytem based on Reed-Muller codes. Discrete Math. Appl., 4(3):191—207, 1994.

Parameters	Key size	Security level
[1024, 176, 128] ₂	22.5 ko	2 ⁷²
[2048, 232, 256] ₂	59,4 ko	2 ⁹³

Which code Family? - Reed-Muller codes

Reed-Muller codes

V. Sidelnikov.

A public-key cryptosytem based on Reed-Muller codes. Discrete Math. Appl., 4(3):191-207, 1994.

Parameters	Key size	Security level
[1024, 176, 128] ₂	22.5 ko	2 ⁷²
[2048, 232, 256] ₂	59,4 ko	2 ⁹³

Attacks against this proposal:

I Minder and A Shokrollahi

Cryptanalysis of the Sidelnikov cryptosystem. In EUROCRYPT 2007, pages 347-360, 2007.

I. V. Chizhov, and M. A. Borodin.

The failure of McFliece PKC based on Reed-Muller codes IACR Cryptology ePrint Archive, 287, 2013.

Which code Family? - AG codes

Algebraic Geometry codes

H. Janwa and O. Moreno.

McEliece public crypto system using algebraic-geometric codes. Designs, Codes and Cryptography, 1996.

Parameters	Key size	Security level
$[171, 109, 61]_{128}$	16 ko	2 ⁶⁶

Which code Family? - AG codes

Algebraic Geometry codes

H. Janwa and O. Moreno.

McEliece public crypto system using algebraic-geometric codes. Designs, Codes and Cryptography, 1996.

Parameters	Key size	Security level
$[171, 109, 61]_{128}$	16 ko	2 ⁶⁶

Attacks against this proposal:

C. Faure and I. Minder

Cryptanalysis of the McEliece cryptosystem over hyperelliptic codes. Proceedings 11th Int. Workshop on Algebraic and Combinatorial Coding Theory, 2008.

A. Couvreur, I. Márquez-Corbella and R. Pellikaan.

A polynomial time attack against Algebraic Geometry code based Public-Key Cryptosystems. ISIT 2014, 1446-1450, 2014.

Which code Family? - Concatenated codes

Concatenated codes

H. Niederreiter.

Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, 15(2):159-166, 1986.

Which code Family? - Concatenated codes

Concatenated codes

H. Niederreiter.

Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, 15(2):159-166, 1986.

Attack against this proposal:

N. Sendrier.

On the concatenated structure of a linear code. AAECC, 9(3):221-242, 1998

Which code Family? - Convolutional codes

Convolutional codes

C. Löndahl and T. Johansson.

A new version of McEliece PKC based on convolutional codes. ICICS, 15(2): 461-470, 2012.

Which code Family? - Convolutional codes

Convolutional codes

C. Löndahl and T. Johansson.

A new version of McEliece PKC based on convolutional codes. ICICS, 15(2): 461-470, 2012.

Attack against this proposal:

G. Landais and J.P. Tillich

An efficient attack of a McEliece cryptosystem variant based on convolutional codes. Post-Quantum Cryptography, LNCS, vol. 7932, 102-117, 2013.

Which code Family? - Binary Goppa codes

Binary Goppa codes

R. J. McEliece.

A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, 42-44:114—116, 1978.

Parameters	Key size	Security level
[1024, 524, 101] ₂	67 ko	2 ⁶²
[2048, 1608, 48] ₂	412 ko	2 ⁹⁶

Which code Family? - Binary Goppa codes

Binary Goppa codes

R. J. McEliece.

A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, 42-44:114—116, 1978.

Parameters	Key size	Security level
[1024, 524, 101] ₂	67 ko	2 ⁶²
[2048, 1608, 48] ₂	412 ko	2 ⁹⁶

4. Key Attacks

- 1. Introduction
- 2. Support Splitting Algorithm
- 3. Distinguisher for GRS codes
- 4. Attack against subcodes of GRS codes
- 5. Error-Correcting Pairs
- 6. Attack against GRS codes
- 7. Attack against Reed-Muller codes
- 8. Attack against Algebraic Geometry codes
- 9. Goppa codes still resist