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ISD – Complexity Analysis

We will refer to Information Set Decoding (ISD) to designate is a family of
algorithms similar to Prange algorithm

All variants of Information Set Decoding repeat a (large) number of times an
independent iteration which has
• a constant (expected) cost K
• a success probability P

→ an expected number of iteration N = 1/P
The workfactor is N · K
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ISD – One Solution or All Solutions?

We consider the problem CSD(H, s,w) with H ∈ {0,1}(n−k)×n and s ∈ {0,1}n−k

We assume that CSD(H, s,w) 6= ∅ (i.e. s ∈ {eHT | wt(e) = w})

→ there is always at least one solution

1. If
(n

w

)
< 2n−k (i.e. w < τGV) there is exactly one solution

2. If
(n

w

)
> 2n−k (i.e. w > τGV) there are

(n
w

)
/2n−k solutions (on average)

First case (the most common)→ no difference

Second case→ finding only one solution should be easier

(intuitively by a factor
(n

w

)
/2n−k )
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ISD – Probabilities

ISD performs many independent iterations. For one iteration, we denote

• P∞ the probability to find one specific element of CSD(H, s,w)

• P1 the probability to find any one element of CSD(H, s,w)

If N = |CSD(H, s,w)|, we have

P1 = 1− (1− P∞)N ≈ min(1,NP∞) up to a small constant factor

or simply P1 = NP∞ if N is not too large (which corresponds to intuition)

For the complexity analysis, there are two situations
• “w < τGV” or “w > τGV and we want all solutions”
→ we expect to execute N∞ = 1/P∞ iterations
• “w > τGV and we want only one solution”

→ we expect to execute N1 = N∞/N = 2n−k

(n
w)P∞

iterations
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Prange Algorithm – Complexity Analysis

An error pattern is found if it has the following form e =

n − k-� k -�

weight w 0 0

It follows that P∞ =

(n−k
w

)(n
w

) and P1 =

(n−k
w

)
min(2n−k ,

(n
w

)
)

K = n(n − k) column operations (the Gaussian elimination dominates)

Total workfactor is

• for all solutions WFPrange = n(n − k)

(n
w

)(n−k
w

)
• for one solution n(n − k)

min(2n−k ,
(n

w

)
)(n−k

w

)
indeed the values are identical when

(n
w

)
< 2n−k
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