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Generalized Birthday Algorithm

Proposed by D. Wagner in 2002, in a more general context

The Generalized Birthday Algorithm (GBA) of order a solves the following problem:

Instance: 2a lists of vectors Li ⊂ {0,1}`, i = 1,2, . . . ,2a

Answer: xi ∈ Li , i = 1,2, . . . ,2a such that x1 + x2 + . . .+ x2a = 0

If the lists are large enough, then GBA runs in time O
(
2`/(a+1))

(the case a = 1 corresponds to the usual birthday paradox)

GBA can be applied to decoding
• it applies to instances of CSD with many solutions
• it aims at finding one solution only
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Birthday Decoding Again

H = H1 H2

s = s1 + s2 arbitrarily

Let H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , and w > 0, we consider CSD(H, s,w) where

• there are many solutions: exact condition to be determined
• we only want one solution
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• there are many solutions: exact condition to be determined
• we only want one solution

We build two lists of size L

Li ⊂ {si + eiHT
i | wt(ei) = w/2}, i ∈ {1,2}

Any element of L1 ∩ L2 provides a solution
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Let H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , and w > 0, we consider CSD(H, s,w) where

• there are many solutions:
(n/2

w/2

)2
≥ 2n−k

• we only want one solution

We build two lists of size L

Li ⊂ {si + eiHT
i | wt(ei) = w/2}, i ∈ {1,2}

Any element of L1 ∩ L2 provides a solution

We must have |L1 ∩ L2| =
L2

2n−k ≥ 1

Choosing L = 2(n−k)/2 the workfactor is O
(
2(n−k)/2)

L cannot exceed
(n/2

w/2

)
, and thus we need

(n/2
w/2

)2
≥ 2n−k
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Order 2 GBA for Decoding

H = H1 H2 H3 H4 s = s1 + s2 + s3 + s4

Let Li ⊂ {si + eiHT
i | wt(ei) = w/4}, i ∈ {1,2,3,4} of size L = 2`, ` = (n − k)/3

Let L1,2 ⊂ {x1 + x2 | x1 ∈ Li , x2 ∈ L2, φ`(x1 + x2) = 0} (φ`(x) the last ` bits of x)

We define L3,4 similarly, we expect |L1,2| = |L3,4| = L2/2` = L

We expect |L1,2 ∩ L3,4| =
|L1,2| · |L3,4|

2n−k−`
= L4/2n−k+` = 1

After computing L1,L2,L3,L4,L1,2,L3,4 we expect to find an element in L1,2 ∩L3,4
from which we derive a solution to CSD(H, s,w)

The computing effort is O
(
2(n−k)/3) possible only if

(n/4
w/4

)
≥ 2(n−k)/3
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Order a GBA for Decoding

In general the order a GBA decoding will have a cost O
(

2
n−k
a+1

)
It is possible only if

(n/2a

w/2a

)
≥ 2

n−k
a+1

Asymptotically, the condition becomes
(n

w

)
≥ 2

2a
a+1 (n−k) up to a polynomial factor

This reflects the fact that higher order GBA requires higher values of w

Finally, note that improvements of birthday decoding apply

This allows to lower the complexity in some cases

4



Order a GBA for Decoding

In general the order a GBA decoding will have a cost O
(

2
n−k
a+1

)
It is possible only if

(n/2a

w/2a

)
≥ 2

n−k
a+1

Asymptotically, the condition becomes
(n

w

)
≥ 2

2a
a+1 (n−k) up to a polynomial factor

This reflects the fact that higher order GBA requires higher values of w

Finally, note that improvements of birthday decoding apply

This allows to lower the complexity in some cases

4



Order a GBA for Decoding

In general the order a GBA decoding will have a cost O
(

2
n−k
a+1

)
It is possible only if

(n/2a

w/2a

)
≥ 2

n−k
a+1

Asymptotically, the condition becomes
(n

w

)
≥ 2

2a
a+1 (n−k) up to a polynomial factor

This reflects the fact that higher order GBA requires higher values of w

Finally, note that improvements of birthday decoding apply

This allows to lower the complexity in some cases

4



Comparing GBA and ISD

Information Set Decoding (all variants) and its complexity analysis can easily be
adapted to the case where we seek one solution among many

In practice ISD is almost always more efficient

GBA is more efficient only when the code rate k/n is close to 1 and even then, it is
only better for a limited range of values of w
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