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Further Improvement of Birthday Decoding

L1(r , ε) =
{

e1HT | wt(e1) =
w
2 + ε, φr (e1HT ) = 0

}
L2(r , ε) =

{
s + e2HT | wt(e2) =

w
2 + ε, φr (s + e2HT ) = 0

}
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Idea: if ε = (w/2+ε)2

n , two words of weight w
2 + ε and length n are expected to have{

ε non-zero positions in common
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Note also that there are
( w

w/2

)(n−w
ε

)
different ways to write
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w
2 + ε
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)
and ε = (w/2+ε)2

n
Any e ∈ CSD(H, s,w) is “represented in L1(r , ε) ∩ L2(r , ε)” with probability > 1/2

Workfactor “simplifies” to√( n
w/2+ε

)
+

(n
w

)( n
w/2+ε

) + (n
w

)
2n−k

(up to a polynomial factor)
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Impact on MMT Algorithm Complexity

Instead of

WFMMT = min
p

(n
w

)(n−k−`
w−p

)(k+`−p/2
p/2

) with ` = log2
(k+`

p/2

)
(up to a constant factor)

We set ε = (w/2+ε)2

n , and the workfactor reduces to

WF = min
p

(n
w

)(n−k−`
w−p

)( k+`
p/2+ε

) with ` = log2
( k+`

p/2+ε

)
(up to a polynomial factor)

This is the embryo of the next improvement of ISD
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Becker, Joux, May, and Meurer Algorithm (1/2)

Idea: what happens if we let ε grows (much) beyond w2/4n?

L1(r , ε) =
{

e1HT | wt(e1) =
w
2 + ε, φr (e1HT ) = 0

}
L2(r , ε) =

{
s + e2HT | wt(e2) =

w
2 + ε, φr (s + e2HT ) = 0

}

The workfactor becomes
√

L +
L
2r +

L2

2n−k+r with L =
( n

w/2+ε

)
and 2r =

( w
w/2

)(n−w
ε

)
We may also write

√
L +

1
µ

(n
w

)
L

+
1
µ

(n
w

)
2n−k

where µ =

(w/2+ε
ε

)(n−w/2−ε
w/2

)( n
w/2+ε

) is the probability that two words

of weight w/2 + ε and length n have a sum of weight w
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BJMM Algorithm (2/2)

BJMM Algorithm, key features:
• increase ε leading to FIBD (Further Improved Birthday Decoding)
• make an additional level of recursive call to FIBD

(improved birthday decoding makes two calls to smaller CSD problems)
• embed all this into Information Set Decoding framework

Improves the workfactor
Algorithm and analysis are very elaborated
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Comparison of the Various ISD Variants

WF = 2c·n(1+o(1))

c a constant
(asymptotic exponent)

c = lim
n→∞

log2 WF
n

k = 0.5n
w = 0.11n

Enumeration 0.5
Birthday Decoding 0.25
Prange 0.1198
Stern 0.1154
Dumer 0.1151
MMT 0.1101
BJMM 0.1000
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Prange 0.1198 0.0724
Stern 0.1154 0.0680
Dumer 0.1151 0.0679
MMT 0.1101 0.0638
BJMM 0.1000 0.0562

Remark that Birthday Decoding is comparatively better when k/n grows
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