3. Message Attack (ISD)

- 1. From Generic Decoding to Syndrome Decoding
- 2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
- 3. Information Set Decoding: the Power of Linear Algebra
- 4. Complexity Analysis
- 5. Lee and Brickell Algorithm
- 6. Stern/Dumer Algorithm
- 7. May, Meurer, and Thomae Algorithm
- 8. Becker, Joux, May, and Meurer Algorithm
- 9. Generalized Birthday Algorithm for Decoding
- 10. Decoding One Out of Many

 $\mathcal{L}_{1}(r,\varepsilon) = \left\{ e_{1}H^{T} \mid \mathsf{wt}(e_{1}) = \frac{w}{2} + \varepsilon, \phi_{r}(e_{1}H^{T}) = 0 \right\}$ $\mathcal{L}_{2}(r,\varepsilon) = \left\{ s + e_{2}H^{T} \mid \mathsf{wt}(e_{2}) = \frac{w}{2} + \varepsilon, \phi_{r}(s + e_{2}H^{T}) = 0 \right\}$

 $\mathcal{L}_{1}(r,\varepsilon) = \left\{ e_{1}H^{T} \mid \mathsf{wt}(e_{1}) = \frac{w}{2} + \varepsilon, \phi_{r}(e_{1}H^{T}) = 0 \right\}$ $\mathcal{L}_{2}(r,\varepsilon) = \left\{ s + e_{2}H^{T} \mid \mathsf{wt}(e_{2}) = \frac{w}{2} + \varepsilon, \phi_{r}(s + e_{2}H^{T}) = 0 \right\}$

Idea:

two words of weight $\frac{w}{2}$ and length *n* are expected to have $\begin{cases} \frac{w^2}{4n} \text{ non-zero positions in common} \\ \text{a sum of weight } w - \frac{w^2}{2n} \end{cases}$

$$\mathcal{L}_{1}(r,\varepsilon) = \left\{ e_{1}H^{T} \mid \mathsf{wt}(e_{1}) = \frac{w}{2} + \varepsilon, \phi_{r}(e_{1}H^{T}) = 0 \right\}$$
$$\mathcal{L}_{2}(r,\varepsilon) = \left\{ s + e_{2}H^{T} \mid \mathsf{wt}(e_{2}) = \frac{w}{2} + \varepsilon, \phi_{r}(s + e_{2}H^{T}) = 0 \right\}$$

Idea: if $\varepsilon = \frac{(w/2+\varepsilon)^2}{n}$, two words of weight $\frac{w}{2} + \varepsilon$ and length *n* are expected to have $\begin{cases} \varepsilon & \text{non-zero positions in common} \\ \text{a sum of weight } w \end{cases}$

$$\mathcal{L}_{1}(r,\varepsilon) = \left\{ e_{1}H^{T} \mid \mathsf{wt}(e_{1}) = \frac{w}{2} + \varepsilon, \phi_{r}(e_{1}H^{T}) = 0 \right\}$$
$$\mathcal{L}_{2}(r,\varepsilon) = \left\{ s + e_{2}H^{T} \mid \mathsf{wt}(e_{2}) = \frac{w}{2} + \varepsilon, \phi_{r}(s + e_{2}H^{T}) = 0 \right\}$$

Idea: if $\varepsilon = \frac{(w/2+\varepsilon)^2}{n}$, two words of weight $\frac{w}{2} + \varepsilon$ and length *n* are expected to have $\begin{cases} \varepsilon & \text{non-zero positions in common} \\ \text{a sum of weight } w \end{cases}$

Note also that there are $\binom{w}{w/2}\binom{n-w}{\varepsilon}$ different ways to write $e = e_1 + e_2$ with wt(e) = w and wt(e_1) = wt(e_2) = $\frac{w}{2} + \varepsilon$

$$\mathcal{L}_{1}(r,\varepsilon) = \left\{ e_{1}H^{T} \mid \mathsf{wt}(e_{1}) = \frac{w}{2} + \varepsilon, \phi_{r}(e_{1}H^{T}) = 0 \right\}$$
$$\mathcal{L}_{2}(r,\varepsilon) = \left\{ s + e_{2}H^{T} \mid \mathsf{wt}(e_{2}) = \frac{w}{2} + \varepsilon, \phi_{r}(s + e_{2}H^{T}) = 0 \right\}$$

Claim: Let $2^r = \binom{w}{w/2} \binom{n-w}{\varepsilon}$ and $\varepsilon = \frac{(w/2+\varepsilon)^2}{n}$ Any $e \in \text{CSD}(H, s, w)$ is "represented in $\mathcal{L}_1(r, \varepsilon) \cap \mathcal{L}_2(r, \varepsilon)$ " with probability > 1/2

$$\mathcal{L}_{1}(r,\varepsilon) = \left\{ e_{1}H^{T} \mid \mathsf{wt}(e_{1}) = \frac{w}{2} + \varepsilon, \phi_{r}(e_{1}H^{T}) = 0 \right\}$$
$$\mathcal{L}_{2}(r,\varepsilon) = \left\{ s + e_{2}H^{T} \mid \mathsf{wt}(e_{2}) = \frac{w}{2} + \varepsilon, \phi_{r}(s + e_{2}H^{T}) = 0 \right\}$$

Claim: Let $2^r = \binom{w}{w/2} \binom{n-w}{\varepsilon}$ and $\varepsilon = \frac{(w/2+\varepsilon)^2}{n}$ Any $e \in \text{CSD}(H, s, w)$ is "represented in $\mathcal{L}_1(r, \varepsilon) \cap \mathcal{L}_2(r, \varepsilon)$ " with probability > 1/2

Workfactor "simplifies" to

$$\sqrt{\binom{n}{w/2+\varepsilon}} + \frac{\binom{n}{w}}{\binom{n}{w/2+\varepsilon}} + \frac{\binom{n}{w}}{2^{n-k}}$$

(up to a polynomial factor)

Impact on MMT Algorithm Complexity

Instead of

$$\mathsf{WF}_{\mathsf{MMT}} = \min_{p} \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}\binom{k+\ell-p/2}{p/2}} \text{ with } \ell = \log_2 \binom{k+\ell}{p/2}$$

(up to a constant factor)

Impact on MMT Algorithm Complexity

Instead of

$$\mathsf{WF}_{\mathsf{MMT}} = \min_{p} \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}\binom{k+\ell-p/2}{p/2}} \text{ with } \ell = \log_2 \binom{k+\ell}{p/2}$$

(up to a constant factor)

We set
$$\varepsilon = \frac{(w/2+\varepsilon)^2}{n}$$
, and the workfactor reduces to

$$WF = \min_{p} \frac{\binom{n}{w}}{\binom{n-k-\ell}{p/2+\varepsilon}} \text{ with } \ell = \log_2 \binom{k+\ell}{p/2+\varepsilon}$$

(up to a polynomial factor)

Impact on MMT Algorithm Complexity

Instead of

$$\mathsf{WF}_{\mathsf{MMT}} = \min_{p} \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}\binom{k+\ell-p/2}{p/2}} \text{ with } \ell = \log_2 \binom{k+\ell}{p/2}$$

(up to a constant factor)

We set
$$\varepsilon = \frac{(w/2+\varepsilon)^2}{n}$$
, and the workfactor reduces to

$$WF = \min_{p} \frac{\binom{n}{w}}{\binom{n-k-\ell}{p/2+\varepsilon}} \text{ with } \ell = \log_2 \binom{k+\ell}{p/2+\varepsilon}$$

(up to a polynomial factor)

This is the embryo of the next improvement of ISD

۱

Becker, Joux, May, and Meurer Algorithm (1/2)

Idea: what happens if we let ε grows (much) beyond $w^2/4n$?

 $\mathcal{L}_{1}(r,\varepsilon) = \left\{ e_{1}H^{T} \mid \mathsf{wt}(e_{1}) = \frac{w}{2} + \varepsilon, \phi_{r}(e_{1}H^{T}) = 0 \right\}$ $\mathcal{L}_{2}(r,\varepsilon) = \left\{ s + e_{2}H^{T} \mid \mathsf{wt}(e_{2}) = \frac{w}{2} + \varepsilon, \phi_{r}(s + e_{2}H^{T}) = 0 \right\}$

Becker, Joux, May, and Meurer Algorithm (1/2)

Idea: what happens if we let ε grows (much) beyond $w^2/4n$?

 $\mathcal{L}_{1}(r,\varepsilon) = \left\{ e_{1}H^{T} \mid \mathsf{wt}(e_{1}) = \frac{w}{2} + \varepsilon, \phi_{r}(e_{1}H^{T}) = 0 \right\}$ $\mathcal{L}_{2}(r,\varepsilon) = \left\{ s + e_{2}H^{T} \mid \mathsf{wt}(e_{2}) = \frac{w}{2} + \varepsilon, \phi_{r}(s + e_{2}H^{T}) = 0 \right\}$ The workfactor becomes $\sqrt{L} + \frac{L}{2^{r}} + \frac{L^{2}}{2^{n-k+r}}$ with $L = \binom{n}{w/2+\varepsilon}$ and $2^{r} = \binom{w}{w/2}\binom{n-w}{\varepsilon}$

Becker, Joux, May, and Meurer Algorithm (1/2)

Idea: what happens if we let ε grows (much) beyond $w^2/4n$?

 $\mathcal{L}_1(r,\varepsilon) = \{ e_1 H^T \mid \mathsf{wt}(e_1) = \frac{w}{2} + \varepsilon, \phi_r(e_1 H^T) = 0 \}$ $\mathcal{L}_{2}(r,\varepsilon) = \{ s + e_{2}H^{T} \mid \mathsf{wt}(e_{2}) = \frac{w}{2} + \varepsilon, \phi_{r}(s + e_{2}H^{T}) = 0 \}$ The workfactor becomes $\sqrt{L} + \frac{L}{2r} + \frac{L^2}{2n-k+r}$ with $L = \binom{n}{w/2+\varepsilon}$ and $2^r = \binom{w}{w/2}\binom{n-w}{\varepsilon}$ We may also write $\sqrt{L} + \frac{1}{m} \frac{\binom{n}{w}}{L} + \frac{1}{m} \frac{\binom{n}{w}}{2n-k}$ where $\mu = \frac{\binom{w/2+\varepsilon}{\varepsilon}\binom{n-w/2-\varepsilon}{w/2}}{\binom{w/2}{\varepsilon}}$ is the probability that two words of weight $w/2 + \varepsilon$ and length *n* have a sum of weight *w*

BJMM Algorithm (2/2)

BJMM Algorithm, key features:

- increase *ε* leading to FIBD (Further Improved Birthday Decoding)
- make an additional level of recursive call to FIBD (improved birthday decoding makes two calls to smaller CSD problems)
- embed all this into Information Set Decoding framework

BJMM Algorithm (2/2)

BJMM Algorithm, key features:

- increase ε leading to FIBD (Further Improved Birthday Decoding)
- make an additional level of recursive call to FIBD (improved birthday decoding makes two calls to smaller CSD problems)
- embed all this into Information Set Decoding framework

Improves the workfactor

Algorithm and analysis are very elaborated

 $\mathsf{WF} = 2^{c \cdot n(1+o(1))}$

c a constant (asymptotic exponent)

	$c = \lim_{n \to \infty} \frac{\log_2 WF}{n}$	
	<i>k</i> = 0.5 <i>n</i>	
	<i>w</i> = 0.11 <i>n</i>	
Enumeration	0.5	
Birthday Decoding	0.25	
Prange	0.1198	
Stern	0.1154	
Dumer	0.1151	
MMT	0.1101	
BJMM	0.1000	

 $\mathsf{WF} = 2^{c \cdot n(1+o(1))}$

c a constant (asymptotic exponent)

	$c = \lim_{n \to \infty} \frac{\log_2 WF}{n}$	
	<i>k</i> = 0.5 <i>n</i>	<i>k</i> = 0.8 <i>n</i>
	<i>w</i> = 0.11 <i>n</i>	w = 0.03 <i>n</i>
Enumeration	0.5	0.2
Birthday Decoding	0.25	0.1
Prange	0.1198	0.0724
Stern	0.1154	0.0680
Dumer	0.1151	0.0679
MMT	0.1101	0.0638
BJMM	0.1000	0.0562

 $\mathsf{WF} = 2^{c \cdot n(1+o(1))}$

c a constant (asymptotic exponent)

	$c = \lim_{n \to \infty} \frac{\log_2 WF}{n}$	
	<i>k</i> = 0.5 <i>n</i>	<i>k</i> = 0.8 <i>n</i>
	<i>w</i> = 0.11 <i>n</i>	<i>w</i> = 0.03 <i>n</i>
Enumeration	0.5	0.2
Birthday Decoding	0.25	0.1
Prange	0.1198	0.0724
Stern	0.1154	0.0680
Dumer	0.1151	0.0679
MMT	0.1101	0.0638
BJMM	0.1000	0.0562

 $\mathsf{WF} = 2^{c \cdot n(1+o(1))}$

c a constant (asymptotic exponent)

Remark that Birthday Decoding is comparatively better when k/n grows

3. Message Attack (ISD)

- 1. From Generic Decoding to Syndrome Decoding
- 2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
- 3. Information Set Decoding: the Power of Linear Algebra
- 4. Complexity Analysis
- 5. Lee and Brickell Algorithm
- 6. Stern/Dumer Algorithm
- 7. May, Meurer, and Thomae Algorithm
- 8. Becker, Joux, May, and Meurer Algorithm
- 9. Generalized Birthday Algorithm for Decoding
- 10. Decoding One Out of Many