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Dumer Algorithm

input: H € {0,1}("=9)xn_s ¢ {0,1}"k integer w > 0, two parameters p and ¢

repeat:

pick a permutation matrix P
compute U,H', H",s', s"
solve CSD(H',s',p)  (birthday decoding)
for all & € CSD(H', s, p)

e« ¢ H//T 4 s

ifwt(e’)=w—p

return (e”,€')P

output: e € {0,1}" such that eH™ = s and wt(e) = w

UHP =

H//




Dumer Algorithm

input: H € {0,1}("=9)xn_s ¢ {0,1}"k integer w > 0, two parameters p and ¢

pick a permutation matrix P
compute U,H', H",s', s"
solve CSD(H',s',p)  (birthday decoding)
for all & € CSD(H', s, p)
e« ¢ H//T 4 s
ifwt(e’)=w—p
return (e”,€')P

Note: Stern’s algorithm (1989) was the first to use birthday
decoding, Dumer’s algorithm (1991) is only marginally better

We will refer now to the Stern/Dumer Algorithm
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Stern/Dumer Algorithm — Complexity Analysis (1/2)
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Stern/Dumer Algorithm — Complexity Analysis (1/2)

In general, we can write
k+t
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where Kp, K1, and K> are small (implementation dependent) constants

we will set Ky = K1 = K> = 1 to simplify the formula
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Stern/Dumer Algorithm — Complexity Analysis (1/2)
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To be minimized over p and ¢ (positive integers)



Stern/Dumer Algorithm — Complexity Analysis (2/2)

The optimization parameters p and ¢ grow with the problem parameters (n, k, w)
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Stern/Dumer Algorithm — Complexity Analysis (2/2)

The optimization parameters p and ¢ grow with the problem parameters (n, k, w)

For cryptographic parameters, the Gaussian elimination will never dominate
and we have a good estimate with
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In most situations, the above formula is minimal when the addends are equal
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(up to a constant factor)
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