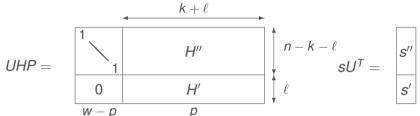
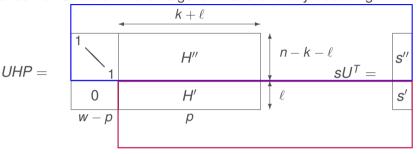
3. Message Attack (ISD)

- 1. From Generic Decoding to Syndrome Decoding
- 2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
- 3. Information Set Decoding: the Power of Linear Algebra
- 4. Complexity Analysis
- 5. Lee and Brickell Algorithm
- 6. Stern/Dumer Algorithm
- 7. May, Meurer, and Thomae Algorithm
- 8. Becker, Joux, May, and Meurer Algorithm
- 9. Generalized Birthday Algorithm for Decoding
- 10. Decoding One Out of Many

Idea: combine Lee & Brickell algorithm and birthday decoding



Idea: combine Lee & Brickell algorithm and birthday decoding



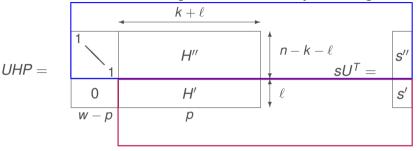
Step 2

Step 1

Step 1: Find all $e' \in CSD(H', s', p)$

Step 2: Check $wt(e'H''^T + s'') = w - p$

Idea: combine Lee & Brickell algorithm and birthday decoding



Step 2

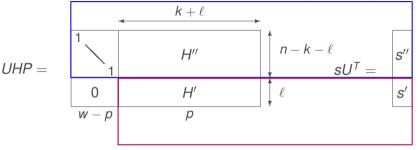
Step 1

Step 1: Find all $e' \in CSD(H', s', p)$

Step 2: Check $wt(e'H''^T + s'') = w - p$

If step 1 is solved by enumeration \rightarrow similar to Lee & Brickell

Idea: combine Lee & Brickell algorithm and birthday decoding



Step 2

Step 1

Step 1: Find all $e' \in CSD(H', s', p)$

Step 2: Check $wt(e'H''^T + s'') = w - p$

If step 1 is solved by enumeration \rightarrow similar to Lee & Brickell

If step 1 is solved by birthday decoding \rightarrow Dumer Algorithm

input: $H \in \{0,1\}^{(n-k)\times n}$, $s \in \{0,1\}^{n-k}$, integer w > 0, two parameters p and ℓ output: $e \in \{0,1\}^n$ such that $eH^T = s$ and wt(e) = w

```
input: H \in \{0,1\}^{(n-k)\times n}, s \in \{0,1\}^{n-k}, integer w > 0, two parameters p and \ell output: e \in \{0,1\}^n such that eH^T = s and wt(e) = w
```

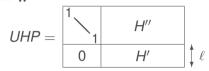
output: $e \in \{0,1\}^n$ such that $eH^T = s$ and wt repeat:

pick a permutation matrix P

input: $H \in \{0,1\}^{(n-k)\times n}$, $s \in \{0,1\}^{n-k}$, integer w > 0, two parameters p and ℓ output: $e \in \{0,1\}^n$ such that $eH^T = s$ and wt(e) = w

repeat:

pick a permutation matrix P compute U, H', H'', s', s''



$$sU^T = \frac{s^{\prime\prime}}{s^{\prime\prime}}$$

input: $H \in \{0,1\}^{(n-k)\times n}$, $s \in \{0,1\}^{n-k}$, integer w > 0, two parameters p and ℓ output: $e \in \{0,1\}^n$ such that $eH^T = s$ and wt(e) = w

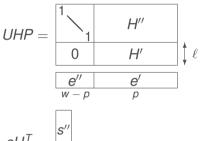
repeat:

pick a permutation matrix P compute U, H', H'', s', s'' solve $\mathrm{CSD}(H', s', p)$ (birthday decoding)

$$sU^T = \frac{s'}{s'}$$

input: $H \in \{0,1\}^{(n-k)\times n}$, $s \in \{0,1\}^{n-k}$, integer w > 0, two parameters p and ℓ output: $e \in \{0,1\}^n$ such that $eH^T = s$ and wt(e) = w

repeat: pick a permutation matrix P compute U, H', H'', s', s'' solve CSD(H', s', p) (birthday decoding) for all $e' \in CSD(H', s', p)$ $e'' \leftarrow e'H''^T + s''$ if wt(e'') = w - p return (e'', e')P

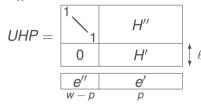


input: $H \in \{0,1\}^{(n-k)\times n}$, $s \in \{0,1\}^{n-k}$, integer w > 0, two parameters p and ℓ output: $e \in \{0,1\}^n$ such that $eH^T = s$ and wt(e) = w

repeat:

pick a permutation matrix Pcompute U, H', H'', s', s''solve CSD(H', s', p) (birthday decoding)

for all $e' \in CSD(H', s', p)$ $e'' \leftarrow e'H''^T + s''$ if wt(e'') = w - preturn (e'', e')P



$$sU^T = rac{s''}{s'}$$

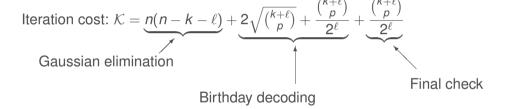
Note: Stern's algorithm (1989) was the first to use birthday decoding, Dumer's algorithm (1991) is only marginally better We will refer now to the Stern/Dumer Algorithm

Iteration cost:
$$\mathcal{K} = n(n-k-\ell) + 2\sqrt{\binom{k+\ell}{p}} + \frac{\binom{k+\ell}{p}}{2^{\ell}} + \frac{\binom{k+\ell}{p}}{2^{\ell}}$$

Iteration cost:
$$\mathcal{K} = \underbrace{n(n-k-\ell)}_{f} + 2\sqrt{\binom{k+\ell}{p}} + \frac{\binom{k+\ell}{p}}{2^{\ell}} + \frac{\binom{k+\ell}{p}}{2^{\ell}}$$
Gaussian elimination

Iteration cost:
$$\mathcal{K} = \underbrace{n(n-k-\ell)}_{\ell} + \underbrace{2\sqrt{\binom{k+\ell}{p}} + \frac{\binom{k+\ell}{p}}{2^{\ell}}}_{\ell} + \frac{\binom{k+\ell}{p}}{2^{\ell}}$$
Gaussian elimination

Birthday decoding



In general, we can write

$$\mathcal{K} = \frac{\mathbf{K_0} \cdot \mathbf{n}(\mathbf{n} - \mathbf{k} - \ell) + \mathbf{K_1} \cdot \sqrt{\binom{k+\ell}{p}} + \mathbf{K_2} \cdot \frac{\binom{k+\ell}{p}}{2^{\ell}}$$

where K_0 , K_1 , and K_2 are small (implementation dependent) constants

we will set $K_0 = K_1 = K_2 = 1$ to simplify the formula

We will simply write $\mathcal{K} = n(n-k-\ell) + \sqrt{\binom{k+\ell}{p}} + \frac{\binom{k+\ell}{p}}{2^{\ell}}$ up to a constant factor

We will simply write $\mathcal{K} = n(n-k-\ell) + \sqrt{\binom{k+\ell}{p}} + \frac{\binom{k+\ell}{p}}{2^{\ell}}$ up to a constant factor

Success probability:
$$\mathcal{P}_{\infty} = \frac{\binom{k+\ell}{p}\binom{n-k-\ell}{w-p}}{\binom{n}{w}}$$
 and $\mathcal{N}_{\infty} = \frac{1}{\mathcal{P}_{\infty}} = \frac{\binom{n}{w}}{\binom{k+\ell}{p}\binom{n-k-\ell}{w-p}}$

We will simply write $\mathcal{K} = n(n-k-\ell) + \sqrt{\binom{k+\ell}{p}} + \frac{\binom{k+\ell}{p}}{2^{\ell}}$ up to a constant factor

Success probability:
$$\mathcal{P}_{\infty} = \frac{\binom{k+\ell}{p}\binom{n-k-\ell}{w-p}}{\binom{n}{w}}$$
 and $\mathcal{N}_{\infty} = \frac{1}{\mathcal{P}_{\infty}} = \frac{\binom{n}{w}}{\binom{k+\ell}{p}\binom{n-k-\ell}{w-p}}$

Workfactor
$$\operatorname{WF}_{\operatorname{SD}}(p,\ell) = \mathcal{N}_{\infty} \cdot \mathcal{K} = \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}} \left(\frac{n(n-k+\ell)}{\binom{k+\ell}{p}} + \frac{1}{\sqrt{\binom{k+\ell}{p}}} + \frac{1}{2^{\ell}} \right)$$

We will simply write $\mathcal{K} = n(n-k-\ell) + \sqrt{\binom{k+\ell}{p}} + \frac{\binom{k+\ell}{p}}{2^{\ell}}$ up to a constant factor

Success probability:
$$\mathcal{P}_{\infty} = \frac{\binom{k+\ell}{p}\binom{n-k-\ell}{w-p}}{\binom{n}{w}}$$
 and $\mathcal{N}_{\infty} = \frac{1}{\mathcal{P}_{\infty}} = \frac{\binom{n}{w}}{\binom{k+\ell}{p}\binom{n-k-\ell}{w-p}}$

Workfactor WF_{SD}
$$(p, \ell) = \mathcal{N}_{\infty} \cdot \mathcal{K} = \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}} \left(\frac{n(n-k+\ell)}{\binom{k+\ell}{p}} + \frac{1}{\sqrt{\binom{k+\ell}{p}}} + \frac{1}{2^{\ell}} \right)$$

(up to a constant factor)

We will simply write $\mathcal{K} = n(n-k-\ell) + \sqrt{\binom{k+\ell}{p}} + \frac{\binom{k+\ell}{p}}{2^{\ell}}$ up to a constant factor

Success probability:
$$\mathcal{P}_{\infty} = \frac{\binom{k+\ell}{p}\binom{n-k-\ell}{w-p}}{\binom{n}{w}}$$
 and $\mathcal{N}_{\infty} = \frac{1}{\mathcal{P}_{\infty}} = \frac{\binom{n}{w}}{\binom{k+\ell}{p}\binom{n-k-\ell}{w-p}}$

Workfactor
$$\operatorname{WF}_{\operatorname{SD}}(p,\ell) = \mathcal{N}_{\infty} \cdot \mathcal{K} = \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}} \left(\frac{n(n-k+\ell)}{\binom{k+\ell}{p}} + \frac{1}{\sqrt{\binom{k+\ell}{p}}} + \frac{1}{2^{\ell}} \right)$$

(up to a constant factor)

To be minimized over p and ℓ (positive integers)

The optimization parameters p and ℓ grow with the problem parameters (n, k, w)

$$\mathsf{WF}_{\mathsf{SD}}(p,\ell) = \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}} \left(\frac{n(n-k+\ell)}{\binom{k+\ell}{p}} + \frac{1}{\sqrt{\binom{k+\ell}{p}}} + \frac{1}{2^{\ell}} \right)$$

The optimization parameters p and ℓ grow with the problem parameters (n, k, w)

For cryptographic parameters, the Gaussian elimination will never dominate

$$\mathsf{WF}_{\mathsf{SD}}(p,\ell) = \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}} \left(\frac{n(n-k+\ell)}{\binom{k+\ell}{p}} + \frac{1}{\sqrt{\binom{k+\ell}{p}}} + \frac{1}{2^{\ell}} \right)$$

The optimization parameters p and ℓ grow with the problem parameters (n, k, w)

For cryptographic parameters, the Gaussian elimination will never dominate and we have a good estimate with

$$\mathsf{WF}_{\mathsf{SD}}(p,\ell) = rac{inom{n}{w}}{inom{n-k-\ell}{w-p}} \left(rac{1}{\sqrt{inom{k+\ell}{p}}} + rac{1}{2^\ell}
ight)$$

The optimization parameters p and ℓ grow with the problem parameters (n, k, w)

For cryptographic parameters, the Gaussian elimination will never dominate and we have a good estimate with

$$\mathsf{WF}_{\mathsf{SD}}(p,\ell) = \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}} \left(\frac{1}{\sqrt{\binom{k+\ell}{p}}} + \frac{1}{2^{\ell}} \right)$$

In most situations, the above formula is minimal when the addends are equal

$$\mathsf{WF}_{\mathsf{SD}} = \min_{0 \leq \rho \leq w} \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-\rho} \sqrt{\binom{k+\ell}{\rho}}} \text{ with } \ell = \log_2 \sqrt{\binom{k+\ell}{\rho}}$$

The optimization parameters p and ℓ grow with the problem parameters (n, k, w)

For cryptographic parameters, the Gaussian elimination will never dominate and we have a good estimate with

$$\mathsf{WF}_{\mathsf{SD}}(p,\ell) = \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-p}} \left(\frac{1}{\sqrt{\binom{k+\ell}{p}}} + \frac{1}{2^{\ell}} \right)$$

In most situations, the above formula is minimal when the addends are equal

$$\mathsf{WF}_{\mathsf{SD}} = \min_{0 \leq \rho \leq w} \frac{\binom{n}{w}}{\binom{n-k-\ell}{w-\rho} \sqrt{\binom{k+\ell}{\rho}}} \text{ with } \ell = \log_2 \sqrt{\binom{k+\ell}{\rho}}$$

(up to a constant factor)

3. Message Attack (ISD)

- 1. From Generic Decoding to Syndrome Decoding
- 2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
- 3. Information Set Decoding: the Power of Linear Algebra
- 4. Complexity Analysis
- 5. Lee and Brickell Algorithm
- 6. Stern/Dumer Algorithm
- 7. May, Meurer, and Thomae Algorithm
- 8. Becker, Joux, May, and Meurer Algorithm
- 9. Generalized Birthday Algorithm for Decoding
- 10. Decoding One Out of Many