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Information Set Decoding: Using Linear Algebra

For any invertible U € {0, 1}("=K)x(n—kK) and any permutation matrix P € {0, 1}7%"
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For any invertible U € {0, 1}("=K)x(n—kK) and any permutation matrix P € {0, 1}7%"

CSD(H, s, w) = CSD(UHP, sUT, w)

information set

]
In particular H' = UHP = \ and 8 = sUT =
1
n—k ‘kr
possible if the first n— k \
columns of HP are
independent in which case the rightmost k

positions form an information set



Information Set Decoding: Using Linear Algebra
For any invertible U € {0, 1}("=K)x(n—kK) and any permutation matrix P € {0, 1}7%"

CSD(H, s, w) = CSD(UHP, sUT, w)

information set

]
In particular H' = UHP = \ and s’ = sU™ =
1
e = eP = [ weightw | 0

0]

If we are lucky
— the error positions are out of the information set



Information Set Decoding: Using Linear Algebra

For any invertible U € {0, 1}("=K)x(n—kK) and any permutation matrix P € {0, 1}7%"

CSD(H, s, w) = CSD(UHP, sUT, w)

information set

In particular H' = UHP =

1

N

1

e =eP =|
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[0

0]

If we are lucky

— the error positions are out of the information set

and s’ = sUT =

— easy to check because € = (s’ | 0) and wi(s') = w
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Prange Algorithm

input: H € {0,1}("=F)xn s ¢ 10,1}k integer w > 0
output: e € {0,1}" such that eH™ = s and wt(e) = w

repeat:
pick a permutation matrix P

1
compute UHP = \ (Gaussian elimination)
1
if wt(sUT) = w then return (sU',0)P~"

Each iteration costs about n(n — k) column operations

Repeat until a solution has its non-zero coordinates “all left”
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