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Information Set Decoding: Using Linear Algebra

For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

(
eHT = s

)
⇔
(

e′H ′T = s′
)

where


H ′ ← UHP
s′ ← sUT

e′ ← eP
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For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

(
eHT = s

)
⇔
(

e′H ′T = s′
)

where


H ′ ← UHP
s′ ← sUT

e′ ← eP

Proof: e′H ′T = (eP)(UHP)T

= (eP)PT HT UT

= eHT UT

= sUT

= s′
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Information Set Decoding: Using Linear Algebra

For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

CSD(H, s,w) ≡ CSD(UHP, sUT ,w)

In particular H ′ = UHP =

information set
1

1

and s′ = sUT =

e′ = eP = weight w 0 0

@
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If we are lucky
– the error positions are out of the information set
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Information Set Decoding: Using Linear Algebra

For any invertible U ∈ {0,1}(n−k)×(n−k) and any permutation matrix P ∈ {0,1}n×n

CSD(H, s,w) ≡ CSD(UHP, sUT ,w)

In particular H ′ = UHP =

information set
1

1

and s′ = sUT =

e′ = eP = s′ 0 0

@
@@

If we are lucky
– the error positions are out of the information set
– easy to check because e′ = (s′ | 0) and wt(s′) = w
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Prange Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0
output: e ∈ {0,1}n such that eHT = s and wt(e) = w
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Prange Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P
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(Gaussian elimination)
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(Gaussian elimination)

if wt(sUT ) = w then return (sUT ,0)P−1
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Prange Algorithm
input: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , integer w > 0
output: e ∈ {0,1}n such that eHT = s and wt(e) = w

repeat:
pick a permutation matrix P

compute UHP =

1

1

@
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(Gaussian elimination)

if wt(sUT ) = w then return (sUT ,0)P−1

Each iteration costs about n(n − k) column operations

Repeat until a solution has its non-zero coordinates “all left”
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