3. Message Attack (ISD)

- 1. From Generic Decoding to Syndrome Decoding
- 2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
- 3. Information Set Decoding: the Power of Linear Algebra
- 4. Complexity Analysis
- 5. Lee and Brickell Algorithm
- 6. Stern/Dumer Algorithm
- 7. May, Meurer, and Thomae Algorithm
- 8. Becker, Joux, May, and Meurer Algorithm
- 9. Generalized Birthday Algorithm for Decoding
- 10. Decoding One Out of Many

Exhaustive Search

Problem: find *w* columns of *H* adding to *s* (modulo 2)

Exhaustive Search

Problem: find *w* columns of *H* adding to *s* (modulo 2)

$$H = \begin{bmatrix} h_1 & h_2 & \cdots & h_n \end{bmatrix} \begin{pmatrix} n & -k & s = \end{bmatrix}$$

Answer: enumerate all *w*-tuples (j_1, j_2, \dots, j_w) such that $1 \le j_1 < j_2 < \dots < j_w \le n$ and check whether $s + h_{j_1} + h_{j_2} \cdots + h_{j_w} = 0$

How to enumerate nicely

Enumerate
$$\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$$

Enumerate
$$\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$$

Enumerate
$$\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$$

for
$$j_1$$
 from 1 to n
1:
for j_2 from $j_1 + 1$ to n
2:
 $H = \begin{bmatrix} n \\ h_1 \\ h_2 \\ \dots \\ h_n \end{bmatrix} \begin{bmatrix} s \\ s \\ n - k \end{bmatrix}$

Enumerate $\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$

for
$$j_1$$
 from 1 to n
1:
for j_2 from $j_1 + 1$ to n
2:
for j_W from $j_{W-1} + 1$ to n
 $H = \begin{bmatrix} n \\ h_1 \\ h_2 \\ \dots \\ h_n \end{bmatrix} \begin{bmatrix} s \\ s \\ n - k \end{bmatrix} \begin{bmatrix} n - k \\ n - k \end{bmatrix}$

W:

Enumerate $\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$

for
$$j_1$$
 from 1 to n
1:
for j_2 from $j_1 + 1$ to n
2:
for j_w from $j_{w-1} + 1$ to n
 W :
 $S_w \leftarrow s + h_{j_1} + h_{j_2} + \dots + h_{j_w}$

Enumerate $\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$

for
$$j_1$$
 from 1 to n
1:
for j_2 from $j_1 + 1$ to n
2:
for j_w from $j_{w-1} + 1$ to n
w:
 $s_w \leftarrow s + h_{j_1} + h_{j_2} + \dots + h_{j_w}$
[if $s_w = 0$ then return (j_1, j_2, \dots, j_w)] or [store $(s_w, (j_1, j_2, \dots, j_w))$]

Enumerate {
$$s + eH^T$$
 | wt(e) = w} = { $s + h_{j_1} + \dots + h_{j_w}$ | $1 \le j_1 < \dots < j_w \le n$ }
for j_1 from 1 to n
for j_2 from $j_1 + 1$ to n
2:
for j_w from $j_{w-1} + 1$ to n
w:
 $s_w \leftarrow s + h_{j_1} + h_{j_2} + \dots + h_{j_w}$
[if $s_w = 0$ then return (j_1, j_2, \dots, j_w)] or [store $(s_w, (j_1, j_2, \dots, j_w))$]
Total cost is at most $w \binom{n}{w}$ column additions and $\binom{n}{w}$ tests

Enumerate
$$\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$$

for j_1 from 1 to n
1:
for j_2 from $j_1 + 1$ to n
2:
 \therefore
for j_w from $j_{w-1} + 1$ to n
 w :
 $S_w \leftarrow s + h_{j_1} + h_{j_2} + \dots + h_{j_w}$
[if $s_w = 0$ then return (j_1, j_2, \dots, j_w)] or [store $(s_w, (j_1, j_2, \dots, j_w))$]
Total cost is at most $w \begin{pmatrix} n \\ w \end{pmatrix}$ column additions and $\begin{pmatrix} n \\ w \end{pmatrix}$ tests

Enumerate
$$\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_W} \mid 1 \le j_1 < \dots < j_W \le n\}$$

for j_1 from 1 to n
1:
for j_2 from $j_1 + 1$ to n
2:
 $for j_W$ from $j_{W-1} + 1$ to n
 $w:$
 $s_W \leftarrow s + h_{j_1} + h_{j_2} + \dots + h_{j_W}$
[if $s_W = 0$ then return (j_1, j_2, \dots, j_W)] or [store $(s_W, (j_1, j_2, \dots, j_W))$]
Total cost is about $w \binom{n}{W}$ column operations

Enumerate
$$\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$$

for
$$j_1$$
 from 1 to n
1: $s_1 \leftarrow s + h_{j_1}$
for j_2 from $j_1 + 1$ to n
2:
for j_w from $j_{w-1} + 1$ to n
 w :
[if $s_w = 0$ then return (j_1, j_2, \dots, j_w)] Or [store $(s_w, (j_1, j_2, \dots, j_w))$]

Instead, we may keep track of partial sums

Enumerate $\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$

for
$$j_1$$
 from 1 to n
1: $s_1 \leftarrow s + h_{j_1}$
for j_2 from $j_1 + 1$ to n
2: $s_2 \leftarrow s_1 + h_{j_2}$ (= $s + h_{j_1} + h_{j_2}$)
 \therefore
for j_W from $j_{W-1} + 1$ to n
W:
[if $s_W = 0$ then return (j_1, j_2, \dots, j_W)] Or [store $(s_W, (j_1, j_2, \dots, j_W))$]

Instead, we may keep track of partial sums

Enumerate
$$\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$$

for
$$j_1$$
 from 1 to n
1: $s_1 \leftarrow s + h_{j_1}$
for j_2 from $j_1 + 1$ to n
2: $s_2 \leftarrow s_1 + h_{j_2}$
 \vdots
for j_W from $j_{W-1} + 1$ to n
W: $s_W \leftarrow s_{W-1} + h_{j_W}$ (= $s + h_{j_1} + h_{j_2} + \dots + h_{j_W}$)
[if $s_W = 0$ then return (j_1, j_2, \dots, j_W)] or [store $(s_W, (j_1, j_2, \dots, j_W))$]

Instead, we may keep track of partial sums

Enumerate $\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$

for
$$j_1$$
 from 1 to n
1: $s_1 \leftarrow s + h_{j_1}$
for j_2 from $j_1 + 1$ to n
2: $s_2 \leftarrow s_1 + h_{j_2}$
for j_w from $j_{w-1} + 1$ to n
W: $s_w \leftarrow s_{w-1} + h_{j_w}$
[if $s_w = 0$ then return (j_1, j_2, \dots, j_w)] or [store $(s_w, (j_1, j_2, \dots, j_w))$]
Line i is executed about $\binom{n}{i}$ times

Enumerate $\{s + eH^T \mid wt(e) = w\} = \{s + h_{j_1} + \dots + h_{j_w} \mid 1 \le j_1 < \dots < j_w \le n\}$

for
$$j_1$$
 from 1 to n
1: $s_1 \leftarrow s + h_{j_1}$
for j_2 from $j_1 + 1$ to n
2: $s_2 \leftarrow s_1 + h_{j_2}$
for j_w from $j_{w-1} + 1$ to n
 w : $s_w \leftarrow s_{w-1} + h_{j_w}$
[if $s_w = 0$ then return (j_1, j_2, \dots, j_w)] or [store $(s_w, (j_1, j_2, \dots, j_w))$]
Line i is executed about $\binom{n}{i}$ times
 \rightarrow total of about $\binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{w}$ column additions

Enumerate { $s + eH^T$ | wt(e) = w} = { $s + h_{j_1} + \dots + h_{j_w}$ | 1 $\leq j_1 < \dots < j_w \leq n$ } for j_1 from 1 to n1: $s_1 \leftarrow s + h_{j_1}$ for j_2 from $j_1 + 1$ to n

for
$$j_2$$
 from $j_1 + 1$ to n
2: $s_2 \leftarrow s_1 + h_{j_2}$
 \vdots
for j_w from $j_{w-1} + 1$ to n
 w : $s_w \leftarrow s_{w-1} + h_{j_w}$
[if $s_w = 0$ then return (j_1, j_2, \dots, j_w)] or [store $(s_w, (j_1, j_2, \dots, j_w))$]
Line i is executed about $\binom{n}{i}$ times
 \rightarrow total of about $\binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{w}$ column additions
dominated by $\binom{n}{w}$ when w is not too large

Exhaustive Search

Problem: find *w* columns of *H* adding to *s* (modulo 2)

Answer: enumerate all *w*-tuples (j_1, j_2, \dots, j_w) such that $1 \le j_1 < j_2 < \dots < j_w \le n$ and check whether $s + h_{j_1} + h_{j_2} \cdots + h_{j_w} = 0$

Requires *about* $\binom{n}{w}$ column operations

Exhaustive Search

Problem: find w columns of H adding to s (modulo 2)

$$H = \begin{bmatrix} h_1 & h_2 & \cdots & h_n \end{bmatrix} \begin{pmatrix} n & -k & s = \end{bmatrix}$$

Answer: enumerate all *w*-tuples (j_1, j_2, \dots, j_w) such that $1 \le j_1 < j_2 < \dots < j_w \le n$ and check whether $s + h_{j_1} + h_{j_2} \cdots + h_{j_w} = 0$

How to enumerate nicely

Requires *about* $\binom{n}{w}$ column operations

Note that we obtain all solutions

Birthday Decoding

Problem: find w columns of H adding to s (modulo 2)

Birthday Decoding

Problem: find *w* columns of *H* adding to *s* (modulo 2)

Answer: Split H into two equal parts and enumerate the two following sets

$$\mathcal{L}_1 = \left\{ e_1 H_1^T \mid \mathsf{wt}(e_1) = \frac{w}{2} \right\} \text{ and } \mathcal{L}_2 = \left\{ s + e_2 H_2^T \mid \mathsf{wt}(e_2) = \frac{w}{2} \right\}$$
$$\cap \mathcal{L}_2 \neq \emptyset, \text{ we have solution(s): } s + e_1 H_1^T + e_2 H_2^T = 0$$

Algorithm

If \mathcal{L}_1

Compute $\mathcal{L}_1 \cap \mathcal{L}_2 = \{e_1 H_1^T \mid wt(e_1) = \frac{w}{2}\} \cap \{s + e_2 H_2^T \mid wt(e_2) = \frac{w}{2}\}$

$$H = \begin{bmatrix} n \\ H_1 \\ H_2 \end{bmatrix} \begin{bmatrix} s \\ s \\ t \\ n-k \end{bmatrix}$$

Compute $\mathcal{L}_1 \cap \mathcal{L}_2 = \left\{ e_1 H_1^T \mid \mathsf{wt}(e_1) = \frac{w}{2} \right\} \cap \left\{ s + e_2 H_2^T \mid \mathsf{wt}(e_2) = \frac{w}{2} \right\}$

for all e_1 of weight w/2 $x \leftarrow e_1 H_1^T$; $T[x] \leftarrow T[x] \cup \{e_1\}$

$$H = \begin{bmatrix} n \\ H_1 \\ H_2 \end{bmatrix} \begin{bmatrix} s \\ s \\ t \\ n-k \end{bmatrix}$$

Total cost: $\binom{n/2}{w/2}$

 $|\mathcal{L}_1|$

Compute $\mathcal{L}_1 \cap \mathcal{L}_2 = \left\{ e_1 H_1^T \mid \mathsf{wt}(e_1) = \frac{w}{2} \right\} \cap \left\{ s + e_2 H_2^T \mid \mathsf{wt}(e_2) = \frac{w}{2} \right\}$

for all e_1 of weight w/2 $x \leftarrow e_1 H_1^T$; $T[x] \leftarrow T[x] \cup \{e_1\}$ for all e_2 of weight w/2 $x \leftarrow s + e_2 H_2^T$

Total cost:
$$\binom{n/2}{w/2} + \binom{n/2}{w/2}$$
 $|\mathcal{L}_1| \quad |\mathcal{L}_2|$

Compute $\mathcal{L}_1 \cap \mathcal{L}_2 = \left\{ e_1 H_1^T \mid \mathsf{wt}(e_1) = \frac{w}{2} \right\} \cap \left\{ s + e_2 H_2^T \mid \mathsf{wt}(e_2) = \frac{w}{2} \right\}$

for all
$$e_1$$
 of weight $w/2$
 $x \leftarrow e_1 H_1^T$; $T[x] \leftarrow T[x] \cup \{e_1\}$
for all e_2 of weight $w/2$
 $x \leftarrow s + e_2 H_2^T$
for all $e_1 \in T[x]$
 $\mathcal{I} \leftarrow \mathcal{I} \cup \{(e_1, e_2)\}$

Total cost:
$$\binom{n/2}{w/2} + \binom{n/2}{w/2} + \frac{\binom{n/2}{w/2}^2}{2^{n-k}}$$
$$|\mathcal{L}_1| \qquad |\mathcal{L}_2| \qquad \frac{|\mathcal{L}_1| \cdot |\mathcal{L}_2|}{2^{n-k}}$$

Compute $\mathcal{L}_1 \cap \mathcal{L}_2 = \left\{ e_1 H_1^T \mid \mathsf{wt}(e_1) = \frac{w}{2} \right\} \cap \left\{ s + e_2 H_2^T \mid \mathsf{wt}(e_2) = \frac{w}{2} \right\}$

for all
$$e_1$$
 of weight $w/2$
 $x \leftarrow e_1 H_1^T$; $T[x] \leftarrow T[x] \cup \{e_1\}$
for all e_2 of weight $w/2$
 $x \leftarrow s + e_2 H_2^T$
for all $e_1 \in T[x]$
 $\mathcal{I} \leftarrow \mathcal{I} \cup \{(e_1, e_2)\}$
return \mathcal{I}
Total cost: $\binom{n/2}{w/2} + \binom{n/2}{w/2} + \frac{\binom{n/2}{w/2}^2}{2^{n-k}}$
 $|\mathcal{L}_1| \quad |\mathcal{L}_2| \quad \frac{|\mathcal{L}_1| \cdot |\mathcal{L}_2|}{2^{n-k}}$

$$H = \begin{bmatrix} H_1 & H_2 \\ H_1 & H_2 \end{bmatrix} \begin{bmatrix} s \\ s \\ t \\ n-k \end{bmatrix}$$

Birthday Decoding

Problem: find *w* columns of *H* adding to *s* (modulo 2)

Answer: Split H into two equal parts and enumerate the two following sets

$$\mathcal{L}_1 = \left\{ e_1 H_1^T \mid \mathsf{wt}(e_1) = \frac{w}{2} \right\} \text{ and } \mathcal{L}_2 = \left\{ s + e_2 H_2^T \mid \mathsf{wt}(e_2) = \frac{w}{2} \right\}$$

If $\mathcal{L}_1 \cap \mathcal{L}_2 \neq \emptyset$, we have solution(s): $s + e_1 H_1^T + e_2 H_2^T = 0$

Algorithm

Requires *about*
$$2\binom{n/2}{w/2} + \frac{\binom{n/2}{w/2}^2}{2^{n-k}}$$
 column operations

Can also be written $2L + L^2/2^{n-k}$ where $L = |\mathcal{L}_1| = |\mathcal{L}_2|$

Problem: find *w* columns of *H* adding to *s* (modulo 2)

$$H = \begin{array}{c} n \\ H_1 \\ H_2 \\ H_2 \\ H_2$$

Problem: find w columns of H adding to s (modulo 2)

$$H = \begin{array}{c} n \\ H_1 \\ H_2 \\ H_2 \\ H_1 \\ H_1$$

One particular error of Hamming weight *w* splits evenly with probability $\mathcal{P} = \frac{\binom{n/2}{w/2}^2}{\binom{n}{w}}$

Problem: find *w* columns of *H* adding to *s* (modulo 2)

$$H = \begin{array}{c} n \\ H_1 \\ H_2 \\ H_2 \\ H_2$$

One particular error of Hamming weight *w* splits evenly with probability $\mathcal{P} = \frac{\binom{n/2}{w/2}^2}{\binom{n}{w}}$

We may have to repeat with H divided in several different ways

or more generally by picking the two halves randomly

Problem: find w columns of H adding to s (modulo 2)

$$H = \begin{array}{c} n \\ H_1 \\ H_2 \\ H_2 \\ H_1 \\ H_2 \\ H_2 \\ H_3 \\ H_4 \\ H_2 \\ H_4 \\ H_2 \\ H_1 \\ H_2 \\ H_3 \\ H_4 \\ H_4 \\ H_4 \\ H_5 \\ H_5$$

To obtain all solutions:

Problem: find w columns of H adding to s (modulo 2)

$$H = \begin{array}{c} n \\ H_1 \\ H_2 \\ H_2 \\ H_2$$

To obtain all most solutions: repeat with $\approx \frac{1}{P}$ different splitting: { 1. compute \mathcal{L}_1 and \mathcal{L}_2 2. compute $\mathcal{L}_1 \cap \mathcal{L}_2$

$$\mathcal{P} = \frac{\binom{n/2}{w/2}^2}{\binom{n}{w}}$$

Problem: find *w* columns of *H* adding to *s* (modulo 2)

$$H = \begin{array}{c} n \\ H_1 \\ H_2 \\ H_2 \\ H_2$$

 $\mathcal{P} = \frac{\binom{n/2}{w/2}^2}{\binom{n}{2}}$

To obtain all most solutions: repeat with $\approx \frac{1}{\mathcal{P}}$ different splitting: $\begin{cases} 1. \text{ compute } \mathcal{L}_1 \text{ and } \mathcal{L}_2 \\ 2. \text{ compute } \mathcal{L}_1 \cap \mathcal{L}_2 \end{cases}$ Total cost $\frac{2\binom{n/2}{w/2} + \binom{n/2}{w/2}^2/2^{n-k}}{\mathcal{P}} = \frac{2\binom{n}{w}}{\binom{n/2}{w/2}} + \frac{\binom{n}{w}}{2^{n-k}}$ operations

Problem: find *w* columns of *H* adding to *s* (modulo 2)

$$H = \begin{array}{c} n \\ H_1 \\ H_2 \\ H_2 \\ H_2$$

To obtain all most solutions: repeat with $\approx \frac{1}{\mathcal{P}}$ different splitting: $\begin{cases}
1. \text{ compute } \mathcal{L}_1 \text{ and } \mathcal{L}_2 \\
2. \text{ compute } \mathcal{L}_1 \cap \mathcal{L}_2
\end{cases}$ Total cost $\frac{2\binom{n/2}{w/2} + \binom{n/2}{w/2}^2/2^{n-k}}{\mathcal{P}} = \frac{2\binom{n}{w}}{\binom{n/2}{w/2}} + \frac{\binom{n}{w}}{2^{n-k}}$ operations $\approx \sqrt[4]{8\pi w} \sqrt{\binom{n}{w}} + \# \text{Solutions}$ $\mathcal{P} = \frac{\binom{n/2}{w/2}^2}{\binom{n}{w}}$

Problem: find w columns of H adding to s (modulo 2)

$$H = \underbrace{H_1}_{n/2 + \varepsilon} \underbrace{H_2}_{n/2 + \varepsilon} \left(n - k \quad S = \right)$$

$$f = \underbrace{H_1}_{n/2 + \varepsilon} \underbrace{H_2}_{n/2 + \varepsilon} \left(n - k \quad S = \right)$$

$$\mathcal{P} = \frac{\binom{n/2 + \varepsilon}{w/2}}{\binom{n}{w}}$$

To obtain all most solutions: repeat with $\approx \frac{1}{P}$ different splitting: { 1. compute \mathcal{L}_1 and \mathcal{L}_2 2. compute $\mathcal{L}_1 \cap \mathcal{L}_2$

Relaxation: allow overlapping \rightarrow H_1 and H_2 are wider by ε

Problem: find w columns of H adding to s (modulo 2)

$$H = \underbrace{H_1}_{n/2 + \varepsilon} \underbrace{H_2}_{n/2 + \varepsilon} n - k \quad s =$$

To obtain all most solutions: repeat with $\approx \frac{1}{\mathcal{D}}$ different splitting: $\begin{cases}
1. compute <math>\mathcal{L}_1 \text{ and } \mathcal{L}_2 \\
2. compute <math>\mathcal{L}_1 \cap \mathcal{L}_2
\end{cases}$

 ≈ 1 $\binom{n}{w}$

Relaxation: allow overlapping $\rightarrow H_1$ and H_2 are wider by ε We choose ε such that $\binom{n/2+\varepsilon}{w/2} \approx \sqrt{\binom{n}{w}} \rightarrow$ single repetition

Problem: find w columns of H adding to s (modulo 2)

$$H = \underbrace{H_1}_{n/2 + \varepsilon} \underbrace{H_2}_{n/2 + \varepsilon} n - k \quad s =$$

n

repeat with $\approx \frac{1}{\mathcal{P}}$ different splitting: $\begin{cases} 1. \text{ compute } \mathcal{L}_1 \text{ and } \mathcal{L}_2 \\ 2. \text{ compute } \mathcal{L}_1 \cap \mathcal{L}_2 \end{cases} \qquad \mathcal{P} = \frac{\binom{n/2+\varepsilon}{w/2}^2}{\binom{n}{w}} \approx 1$

Relaxation: allow overlapping $\rightarrow H_1$ and H_2 are wider by ε We choose ε such that $\binom{n/2+\varepsilon}{w/2} \approx \sqrt{\binom{n}{w}} \rightarrow$ single repetition

Total cost: $2\sqrt{\binom{n}{w} + \binom{n}{w}/2^{n-k}} = 2L + L^2/2^{n-k}$ with $L = \sqrt{\binom{n}{w}}$ (up to a small constant factor)

3. Message Attack (ISD)

- 1. From Generic Decoding to Syndrome Decoding
- 2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
- 3. Information Set Decoding: the Power of Linear Algebra
- 4. Complexity Analysis
- 5. Lee and Brickell Algorithm
- 6. Stern/Dumer Algorithm
- 7. May, Meurer, and Thomae Algorithm
- 8. Becker, Joux, May, and Meurer Algorithm
- 9. Generalized Birthday Algorithm for Decoding
- 10. Decoding One Out of Many