
3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
6. Stern/Dumer Algorithm
7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding

10. Decoding One Out of Many

0Nicolas Sendrier CODE-BASED CRYPTOGRAPHY

Exhaustive Search

Problem: find w columns of
H adding to s (modulo 2) H = h1 h2 · · · hn s =

-� n

6

?

n − k

Answer: enumerate all w-tuples (j1, j2, · · · , jw) such that 1 ≤ j1 < j2 < . . . < jw ≤ n
and check whether s + hj1 + hj2 · · · + hjw = 0

How to enumerate nicely

1

Exhaustive Search

Problem: find w columns of
H adding to s (modulo 2) H = h1 h2 · · · hn s =

-� n

6

?

n − k

Answer: enumerate all w-tuples (j1, j2, · · · , jw) such that 1 ≤ j1 < j2 < . . . < jw ≤ n
and check whether s + hj1 + hj2 · · · + hjw = 0

How to enumerate nicely

1

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1:

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1:

for j2 from j1 + 1 to n
2:

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1:

for j2 from j1 + 1 to n
2:

. . .
for jw from jw−1 + 1 to n

w :

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1:

for j2 from j1 + 1 to n
2:

. . .
for jw from jw−1 + 1 to n

w : sw ← s + hj1 + hj2 + · · ·+ hjw

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1:

for j2 from j1 + 1 to n
2:

. . .
for jw from jw−1 + 1 to n

w : sw ← s + hj1 + hj2 + · · ·+ hjw
[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1:

for j2 from j1 + 1 to n
2:

. . .
for jw from jw−1 + 1 to n

w : sw ← s + hj1 + hj2 + · · ·+ hjw
[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

Total cost is at most w
(

n
w

)
column additions and

(
n
w

)
tests

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1:

for j2 from j1 + 1 to n
2:

. . .
for jw from jw−1 + 1 to n

w : sw ← s + hj1 + hj2 + · · ·+ hjw
[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

Total cost is at most w
(

n
w

)
column additions

���
���

��
and

(
n
w

)
tests

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1:

for j2 from j1 + 1 to n
2:

. . .
for jw from jw−1 + 1 to n

w : sw ← s + hj1 + hj2 + · · ·+ hjw
[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

Total cost is about w
(

n
w

)
column operations

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1: s1 ← s + hj1

for j2 from j1 + 1 to n
2:

. . .
for jw from jw−1 + 1 to n

w :
[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

Instead, we may keep track of partial sums

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1: s1 ← s + hj1

for j2 from j1 + 1 to n
2: s2 ← s1 + hj2 (= s + hj1 + hj2)

. . .
for jw from jw−1 + 1 to n

w :
[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

Instead, we may keep track of partial sums

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1: s1 ← s + hj1

for j2 from j1 + 1 to n
2: s2 ← s1 + hj2

. . .
for jw from jw−1 + 1 to n

w : sw ← sw−1 + hjw (= s + hj1 + hj2 + · · ·+ hjw)

[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

Instead, we may keep track of partial sums

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1: s1 ← s + hj1

for j2 from j1 + 1 to n
2: s2 ← s1 + hj2

. . .
for jw from jw−1 + 1 to n

w : sw ← sw−1 + hjw
[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

Line i is executed about
(

n
i

)
times

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1: s1 ← s + hj1

for j2 from j1 + 1 to n
2: s2 ← s1 + hj2

. . .
for jw from jw−1 + 1 to n

w : sw ← sw−1 + hjw
[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

Line i is executed about
(

n
i

)
times

→ total of about
(

n
1

)
+

(
n
2

)
+ · · ·+

(
n
w

)
column additions

proof proof

1.0

H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1: s1 ← s + hj1

for j2 from j1 + 1 to n
2: s2 ← s1 + hj2

. . .
for jw from jw−1 + 1 to n

w : sw ← sw−1 + hjw
[if sw = 0 then return (j1, j2, . . . , jw)] or [store(sw , (j1, j2, . . . , jw))]

Line i is executed about
(

n
i

)
times

→ total of about
(

n
1

)
+

(
n
2

)
+ · · ·+

(
n
w

)
column additions

dominated by
(

n
w

)
when w is not too large Back

proof proof

1.0

Exhaustive Search

Problem: find w columns of
H adding to s (modulo 2) H = h1 h2 · · · hn s =

-� n

6

?

n − k

Answer: enumerate all w-tuples (j1, j2, · · · , jw) such that 1 ≤ j1 < j2 < . . . < jw ≤ n
and check whether s + hj1 + hj2 · · · + hjw = 0

How to enumerate nicely

Requires about
(

n
w

)
column operations

Note that we obtain all solutions

1

Exhaustive Search

Problem: find w columns of
H adding to s (modulo 2) H = h1 h2 · · · hn s =

-� n

6

?

n − k

Answer: enumerate all w-tuples (j1, j2, · · · , jw) such that 1 ≤ j1 < j2 < . . . < jw ≤ n
and check whether s + hj1 + hj2 · · · + hjw = 0

How to enumerate nicely

Requires about
(

n
w

)
column operations

Note that we obtain all solutions

1

Birthday Decoding

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

Answer: Split H into two equal parts and enumerate the two following sets

L1 =
{

e1HT
1 | wt(e1) =

w
2

}
and L2 =

{
s + e2HT

2 | wt(e2) =
w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s + e1HT

1 + e2HT
2 = 0

Algorithm

2

Birthday Decoding

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

Answer: Split H into two equal parts and enumerate the two following sets

L1 =
{

e1HT
1 | wt(e1) =

w
2

}
and L2 =

{
s + e2HT

2 | wt(e2) =
w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s + e1HT

1 + e2HT
2 = 0

Algorithm

2

Compute L1 ∩ L2 =
{

e1HT
1 | wt(e1) =

w
2

}
∩
{

s + e2HT
2 | wt(e2) =

w
2

}

H = H1 H2

-� n

s
6

?

n − k

proof proof

2.0

Compute L1 ∩ L2 =
{

e1HT
1 | wt(e1) =

w
2

}
∩
{

s + e2HT
2 | wt(e2) =

w
2

}

H = H1 H2

-� n

s
6

?

n − k

Total cost:
(n/2

w/2

)
|L1|

for all e1 of weight w/2
x ← e1HT

1 ; T [x]← T [x] ∪ {e1}

proof proof

2.0

Compute L1 ∩ L2 =
{

e1HT
1 | wt(e1) =

w
2

}
∩
{

s + e2HT
2 | wt(e2) =

w
2

}

H = H1 H2

-� n

s
6

?

n − k

Total cost:
(n/2

w/2

)
+
(n/2

w/2

)
|L1| |L2|

for all e1 of weight w/2
x ← e1HT

1 ; T [x]← T [x] ∪ {e1}
for all e2 of weight w/2

x ← s + e2HT
2

proof proof

2.0

Compute L1 ∩ L2 =
{

e1HT
1 | wt(e1) =

w
2

}
∩
{

s + e2HT
2 | wt(e2) =

w
2

}

H = H1 H2

-� n

s
6

?

n − k

Total cost:
(n/2

w/2

)
+
(n/2

w/2

)
+

(n/2
w/2

)2

2n−k

|L1| |L2| |L1|·|L2|
2n−k

for all e1 of weight w/2
x ← e1HT

1 ; T [x]← T [x] ∪ {e1}
for all e2 of weight w/2

x ← s + e2HT
2

for all e1 ∈ T [x]
I ← I ∪ {(e1,e2)}

proof proof

2.0

Compute L1 ∩ L2 =
{

e1HT
1 | wt(e1) =

w
2

}
∩
{

s + e2HT
2 | wt(e2) =

w
2

}

H = H1 H2

-� n

s
6

?

n − k

Total cost:
(n/2

w/2

)
+
(n/2

w/2

)
+

(n/2
w/2

)2

2n−k

|L1| |L2| |L1|·|L2|
2n−k

for all e1 of weight w/2
x ← e1HT

1 ; T [x]← T [x] ∪ {e1}
for all e2 of weight w/2

x ← s + e2HT
2

for all e1 ∈ T [x]
I ← I ∪ {(e1,e2)}

return I

Back

proof proof

2.0

Birthday Decoding

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

Answer: Split H into two equal parts and enumerate the two following sets

L1 =
{

e1HT
1 | wt(e1) =

w
2

}
and L2 =

{
s + e2HT

2 | wt(e2) =
w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s + e1HT

1 + e2HT
2 = 0

Algorithm

Requires about 2
(n/2

w/2

)
+

(n/2
w/2

)2

2n−k column operations

Can also be written 2L + L2/2n−k where L = |L1| = |L2|
2

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

3

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2
w/2

)2(n
w

)One particular error of Hamming weight w splits evenly with probability

3

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2
w/2

)2(n
w

)One particular error of Hamming weight w splits evenly with probability

We may have to repeat with H divided in several different ways

or more generally by picking the two halves randomly

3

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2
w/2

)2(n
w

)To obtain all solutions:

3

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2
w/2

)2(n
w

)To obtain��all most solutions:

repeat with ≈ 1
P

different splitting:
{

1. compute L1 and L2
2. compute L1 ∩ L2

3

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2
w/2

)2(n
w

)To obtain��all most solutions:

repeat with ≈ 1
P

different splitting:
{

1. compute L1 and L2
2. compute L1 ∩ L2

Total cost
2
(n/2

w/2

)
+
(n/2

w/2

)2
/2n−k

P
=

2
(n

w

)(n/2
w/2

) + (n
w

)
2n−k operations

3

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2
w/2

)2(n
w

)To obtain��all most solutions:

repeat with ≈ 1
P

different splitting:
{

1. compute L1 and L2
2. compute L1 ∩ L2

Total cost
2
(n/2

w/2

)
+
(n/2

w/2

)2
/2n−k

P
=

2
(n

w

)(n/2
w/2

) + (n
w

)
2n−k operations

≈ 4
√

8πw
√(n

w

)
+#Solutions

3

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2+ε
w/2

)2(n
w

)
-�-�

n/2 + εn/2 + ε

To obtain��all most solutions:

repeat with ≈ 1
P

different splitting:
{

1. compute L1 and L2
2. compute L1 ∩ L2

Relaxation: allow overlapping→ H1 and H2 are wider by ε

3

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2+ε
w/2

)2(n
w

) ≈ 1

-�-�
n/2 + εn/2 + ε

To obtain��all most solutions:

repeat with ≈ 1
P

different splitting:
{

1. compute L1 and L2
2. compute L1 ∩ L2

Relaxation: allow overlapping→ H1 and H2 are wider by ε

We choose ε such that
(n/2+ε

w/2

)
≈
√(n

w

)
→ single repetition

3

Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2+ε
w/2

)2(n
w

) ≈ 1

-�-�
n/2 + εn/2 + ε

To obtain��all most solutions:

repeat with ≈ 1
P

different splitting:
{

1. compute L1 and L2
2. compute L1 ∩ L2

Relaxation: allow overlapping→ H1 and H2 are wider by ε

We choose ε such that
(n/2+ε

w/2

)
≈
√(n

w

)
→ single repetition

Total cost: 2
√(n

w

)
+
(n

w

)
/2n−k = 2L + L2/2n−k with L =

√(n
w

)
(up to a small constant factor)

3

3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
6. Stern/Dumer Algorithm
7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding

10. Decoding One Out of Many

Nicolas Sendrier CODE-BASED CRYPTOGRAPHY

