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Exhaustive Search

Problem: find w columns of
H adding to s (modulo 2) H = h1 h2 · · · hn s =

-� n

6

?

n − k

Answer: enumerate all w-tuples (j1, j2, · · · , jw ) such that 1 ≤ j1 < j2 < . . . < jw ≤ n
and check whether s + hj1 + hj2 · · · + hjw = 0

How to enumerate nicely
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H = h1 h2 · · · hn s

-� n

6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof
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6

?

n − k

Enumerate {s + eHT | wt(e) = w} = {s + hj1 + · · · + hjw | 1 ≤ j1 < . . . < jw ≤ n}

for j1 from 1 to n
1:
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for j1 from 1 to n
1:

for j2 from j1 + 1 to n
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. . .
for jw from jw−1 + 1 to n

w : sw ← s + hj1 + hj2 + · · ·+ hjw

proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof proof

1.0



H = h1 h2 · · · hn s

-� n

6

?

n − k
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for j1 from 1 to n
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for j2 from j1 + 1 to n
2:

. . .
for jw from jw−1 + 1 to n

w : sw ← s + hj1 + hj2 + · · ·+ hjw
[if sw = 0 then return (j1, j2, . . . , jw )] or [store(sw , (j1, j2, . . . , jw ))]
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Birthday Decoding

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

Answer: Split H into two equal parts and enumerate the two following sets

L1 =
{

e1HT
1 | wt(e1) =

w
2

}
and L2 =

{
s + e2HT

2 | wt(e2) =
w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s + e1HT

1 + e2HT
2 = 0

Algorithm

2
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Compute L1 ∩ L2 =
{
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Total cost:
(n/2

w/2

)
|L1|

for all e1 of weight w/2
x ← e1HT

1 ; T [x ]← T [x ] ∪ {e1}
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return I

Back
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Birthday Decoding

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

Answer: Split H into two equal parts and enumerate the two following sets

L1 =
{

e1HT
1 | wt(e1) =

w
2

}
and L2 =

{
s + e2HT

2 | wt(e2) =
w
2

}
If L1 ∩ L2 6= ∅, we have solution(s): s + e1HT

1 + e2HT
2 = 0

Algorithm

Requires about 2
(n/2

w/2

)
+

(n/2
w/2

)2

2n−k column operations

Can also be written 2L + L2/2n−k where L = |L1| = |L2|
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?

n − k

P =

(n/2
w/2

)2(n
w

)One particular error of Hamming weight w splits evenly with probability

We may have to repeat with H divided in several different ways

or more generally by picking the two halves randomly
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{
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Total cost
2
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=
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Birthday Decoding – Complexity

Problem: find w columns of
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(n/2
w/2

)2(n
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repeat with ≈ 1
P

different splitting:
{
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2. compute L1 ∩ L2

Total cost
2
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w/2

)
+
(n/2
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P
=

2
(n

w

)(n/2
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w

)
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≈ 4
√

8πw
√(n

w

)
+#Solutions

3



Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2+ε
w/2

)2(n
w

)
-�-�

n/2 + εn/2 + ε

To obtain��all most solutions:

repeat with ≈ 1
P

different splitting:
{

1. compute L1 and L2
2. compute L1 ∩ L2

Relaxation: allow overlapping→ H1 and H2 are wider by ε
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Birthday Decoding – Complexity

Problem: find w columns of
H adding to s (modulo 2) H = H1 H2 s =

-� n

6

?

n − k

P =

(n/2+ε
w/2

)2(n
w

) ≈ 1

-�-�
n/2 + εn/2 + ε

To obtain��all most solutions:

repeat with ≈ 1
P

different splitting:
{

1. compute L1 and L2
2. compute L1 ∩ L2

Relaxation: allow overlapping→ H1 and H2 are wider by ε

We choose ε such that
(n/2+ε

w/2

)
≈
√(n

w

)
→ single repetition

3



Birthday Decoding – Complexity

Problem: find w columns of
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6
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n − k

P =

(n/2+ε
w/2

)2(n
w

) ≈ 1

-�-�
n/2 + εn/2 + ε

To obtain��all most solutions:

repeat with ≈ 1
P

different splitting:
{

1. compute L1 and L2
2. compute L1 ∩ L2

Relaxation: allow overlapping→ H1 and H2 are wider by ε

We choose ε such that
(n/2+ε

w/2

)
≈
√(n

w

)
→ single repetition

Total cost: 2
√(n

w

)
+
(n

w

)
/2n−k = 2L + L2/2n−k with L =

√(n
w

)
(up to a small constant factor)
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3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
6. Stern/Dumer Algorithm
7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding

10. Decoding One Out of Many
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