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3. Message Attacks (ISD)
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3. Message Attack (ISD)
1. From Generic Decoding to Syndrome Decoding
2. Combinatorial Solutions: Exhaustive Search and Birthday Decoding
3. Information Set Decoding: the Power of Linear Algebra
4. Complexity Analysis
5. Lee and Brickell Algorithm
6. Stern/Dumer Algorithm
7. May, Meurer, and Thomae Algorithm
8. Becker, Joux, May, and Meurer Algorithm
9. Generalized Birthday Algorithm for Decoding

10. Decoding One Out of Many
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Message Attack
A cryptogram for the McEliece encryption scheme has the following form

y = xG + e
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and wishes to recover the message (or equivalently the error)

Only an arbitrary generator matrix is known

→ generic decoding problem
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In contrast with the usual situation where the code is known in advance, a generic
decoder takes a q-ary linear [n, k ] code as argument
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Those two kinds of decoders are equivalent

→ we will consider only syndrome decoding
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The Syndrome Decoding Problem
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

Find w columns of H adding to s (modulo 2)

H = h1 h2 · · · hn s =

-�
n

6

?

n − k

Find 1 ≤ j1 < j2 < · · · < jw ≤ n such that

hj1 + hj2 + · · ·+ hjw = s
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Single Solution versus Multiple Solution
Syndrome Decoding Problem

Instance: H ∈ {0,1}(n−k)×n, s ∈ {0,1}n−k , an integer w > 0
Answer: e ∈ {0,1}n such that eHT = s and wt(e) ≤ w

We denote CSD(H, s,w) the set of all solutions to the above problem
Fix n and k and let w grow

-
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