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MDPC - Introduction
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New McEliece variants from moderate density parity-check codes.
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QC-MDPC McEliece scheme
Key Generation Algorithm:

Ü Pick a (sparse) vector (h0,h1) ∈ {0,1}p × {0,1}p of weight w

Repeat until h0(X ) is invertible in F2[X ]/X p − 1 (The weight of h0 has to be odd)

Hsecret =
h0

�
h1

�

Gpublic =
g

�
1 0

. . .
0 1

with h(X ) = h1(X)
h0(X) and g(X ) = xh(x)

h(X ) = h0 + h1X + . . .+ hp−1X p−1 =⇒ h(X ) = hp−1 + . . .+ h1X p−2 + h0X p−1

or Hpublic =
h

�
1 0

. . .
0 1
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QC-MDPC McEliece scheme

Encryption Algorithm:
Encrypt a message m(X ) ∈ F2[X ]

〈X p−1〉 as

ENCRYPT(m(X )) =
(

m(X )g(X ) + e0(X ), m(X ) + e1(X )
)

where e(X ) = (e0(X ),e1(X )) is a random error vector of weight at most t .

Decryption Algorithm:
The secret key will be any LDPC-like iterative decoding algorithm.
(Gallager’s bit-flipping algorithm)

3



QC-MDPC McEliece scheme

Encryption Algorithm:
Encrypt a message m(X ) ∈ F2[X ]

〈X p−1〉 as

ENCRYPT(m(X )) =
(

m(X )g(X ) + e0(X ), m(X ) + e1(X )
)

where e(X ) = (e0(X ),e1(X )) is a random error vector of weight at most t .

Decryption Algorithm:
The secret key will be any LDPC-like iterative decoding algorithm.
(Gallager’s bit-flipping algorithm)

3



Security Reduction

Hpublic =
h

�
1 0

. . .
0 1

with h(X ) = h1(X )
h0(X ) mod X p − 1

The QC-MDPC is secure under two assumptions:

1. QC - MDPC indistinguishability:
Pseudorandomness of the public key
Hard to find sparse vector in the code spanned by H
(dual of the MDPC code).

2. QC Syndrome Decoding: Hardness of generic
decoding of QC codes
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Security Reduction - in terms of polynomials

Hpublic =
h

�
1 0

. . .
0 1

with h(X ) = h1(X )
h0(X ) mod X p − 1

1. QC - MDPC indistinguishability:
Given h(X ), find non-zero (h0(X ),h1(X )) such that:{

h0(X ) + h(X )h1(X ) = 0 mod X p − 1
wH(h0) + wH(h1) ≤ w

2. QC Syndrome Decoding:
Given h(X ), S(X ). Find e(X ) = (e0(X ),e1(X )) such that{

e0(X ) + h(X )e1(X ) = S(X ) mod X p − 1
wH(e0) + wH(e1) ≤ t

In both cases, best known solutions use generic decoding algorithms
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Practical Security - Best known attacks
WSD(n, k , t) = cost for the generic decoding of t errors in a binary [n, k ] code

Parameters:
n k w and p

1. QC-MDPC Indistinguishability: Find a word of weight w in a quasi-cyclic
binary [n,n − k ] code

WK (n, k ,w) ≥ WSD(n,n − k ,w)

n − k
(there are n − k words of weight w)

2. QC Syndrome Decoding: Decode t errors in a quasi-cyclic binary [n, k ] code

WM(n, k , t ,p) ≥ WSD(n, k , t)√
p

(Decoding One Out of Many→ factor
√

p)

N. Sendrier
Decoding one out of many.
Post-Quantum Cryptography, 2011, 51-67, 2011.
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Parameter Selection
To reach a given security level S (for instance 80 or 128) we need to select the
parameters

p w and t

Thus parameters will be such that:
• Find w the smallest integer such that WK (n, k ,w) ≥ 2S

• Find t the error correcting capability of the corresponding MDPC code
• Check that WM(n, k , t ,p) ≥ 2S

80 bits of security 128 bits of security
n = 9602 n = 19714
k = 4801 k = 9857
p = 4801 p = 9857
w = 90 w = 142
t = 84 t = 134
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Conclusion

QC-MDPC-McEliece is a promising variant which enjoys

Ü a reasonable key size
Ü good security arguments (very little structure)
Ü secure against quantum computers
Ü easy implementation
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