Code-Based Cryptography

McEliece Cryptosystem

I. Márquez-Corbella

2. McEliece Cryptosystem

- 1. Formal Definition
- 2. Security-Reduction Proof
- 3. McEliece Assumptions
- 4. Notions of Security
- 5. Critical Attacks Semantic Secure Conversions
- 6. Reducing the Key Size
- 7. Reducing the Key Size LDPC codes
- 8. Reducing the Key Size MDPC codes
- 9. Implementation

Circulant matrix

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{r-1} \\ a_{r-1} & a_0 & a_1 & \cdots & a_{r-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_0 \end{pmatrix}$$

Circulant matrix _____

$$a(X) = a_0 + a_1 X + a_2 X^2 + \ldots + a_{r-1} X^{r-1}$$

Polynomial Representation

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{r-1} \\ a_{r-1} & a_0 & a_1 & \cdots & a_{r-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_0 \end{pmatrix}$$

Circulant matrix

$$a(X) = a_0 + a_1 X + a_2 X^2 + \ldots + a_{r-1} X^{r-1}$$

Polynomial Representation

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{r-1} \\ a_{r-1} & a_0 & a_1 & \cdots & a_{r-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_0 \end{pmatrix} = \begin{matrix} a(X) \\ \swarrow \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\$$

i-th row: $X^i a(X) \mod (X^r - 1)$

Circulant matrix

$$a(X) = a_0 + a_1 X + a_2 X^2 + \ldots + a_{r-1} X^{r-1}$$

Polynomial Representation

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{r-1} \\ a_{r-1} & a_0 & a_1 & \cdots & a_{r-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_0 \end{pmatrix}$$

Proposition:Circulant matrices
of size
$$r \times r$$
Polynomials in
 $\mathbb{F}_q[X]/X^r - 1$

i-th row: $X^i a(X) \mod (X^r - 1)$

Quasi-cyclic codes

Block-Circulant Matrix

Quasi-Cyclic codes

A Linear code that admit a block-circulant parity check matrix.

Quasi-cyclic codes

Quasi-Cyclic codes

A Linear code that admit a block-circulant parity check matrix.

Using subcodes of BCH codes

P. Gaborit.

Shorter keys for code based cryptography.

In International Workshop on Coding and Cryptography (WCC 2005), pp. 81-91.

n	t	Claimed security	Public-Key sizes
2047	31	2 ⁸⁰	40505 bits
4095	26	2 ⁹⁰	12302 bits

Using subcodes of BCH codes

P. Gaborit.

Shorter keys for code based cryptography.

In International Workshop on Coding and Cryptography (WCC 2005), pp. 81-91.

n	t	Claimed security	Public-Key sizes
2047	31	2 ⁸⁰	40505 bits
4095	26	2 ⁹⁰	12302 bits

Attack against this proposal:

A. Otmani, J.P. Tillich and L. Dallot.

Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes. Special Issues of Mathematics in Computer Science, 3(2), pp. 129-140. 2010.

Using subcodes of BCH codes

P. Gaborit.

Shorter keys for code based cryptography.

In International Workshop on Coding and Cryptography (WCC 2005), pp. 81-91.

n	t	Claimed security	Public-Key sizes
2047	31	2 ⁸⁰	40505 bits
4095	26	2 ⁹⁰	12302 bits

Attack against this proposal:

A. Otmani, J.P. Tillich and L. Dallot.

Cryptanalysis of two McEliece cryptosystems based on auasi-cvclic codes. Special Issues of Mathematics in Computer Science, 3(2), pp. 129-140, 2010.

Weakness of the proposal:

1. The public code comes from a primitive BCH code

Using subcodes of BCH codes

P. Gaborit.

Shorter keys for code based cryptography.

In International Workshop on Coding and Cryptography (WCC 2005), pp. 81-91.

n	t	Claimed security	Public-Key sizes
2047	31	2 ⁸⁰	40505 bits
4095	26	2 ⁹⁰	12302 bits

Attack against this proposal:

A. Otmani, J.P. Tillich and L. Dallot.

Cryptanalysis of two McEliece cryptosystems based on auasi-cvclic codes. Special Issues of Mathematics in Computer Science, 3(2), pp. 129-140, 2010.

Weakness of the proposal:

- 1. The public code comes from a primitive BCH code
- 2. The permutation (used to hide the secret code) is too restrictive

Using subcodes of QC-Alternant codes

T.P. Berger, P.L. Cayrel, P. Gaborit and A. Otmani.

Reducing key length of the McEliece cryptosystem. In AFRICACRYPT 2009, pp. 77-97.

q	n	k	t	Security	Public-Key sizes
2 ⁸	663	561	25	2 ⁸⁰	8980 bits
2 ⁸	663	510	37	2 ⁹⁵	12240 bits
2 ⁸	1020	867	37	2 ¹¹⁶	20800 bits

X Attack against this proposal:

J.C. Faugère, A. Otmani, L. Perret and J.P. Tillich.

Algebraic cryptanalysis of McEliece variants with compact keys. In EUROCRYPT 2010, pp. 279-298.

Variants based on Algebraic codes with symmetry Idea of the attack:

Solve the system

$$G H^T = 0$$

Variants based on Algebraic codes with symmetry Idea of the attack:

Solve the system

Variants based on Algebraic codes with symmetry Idea of the attack:

 $G H^T \leftarrow \bullet$

Solve the system

Public generator matrix $H = \begin{pmatrix} 1 \\ a_1 \\ a_1^2 \end{pmatrix}$

Unknown alternant parity check matrix

2. McEliece Cryptosystem

- 1. Formal Definition
- 2. Security-Reduction Proof
- 3. McEliece Assumptions
- 4. Notions of Security
- 5. Critical Attacks Semantic Secure Conversions
- 6. Reducing the Key Size
- 7. Reducing the Key Size LDPC codes
- 8. Reducing the Key Size MDPC codes
- 9. Implementation