Code-Based Cryptography

McEliece Cryptosystem

I. Márquez-Corbella

2. McEliece Cryptosystem

- 1. Formal Definition
- 2. Security-Reduction Proof
- **3. McEliece Assumptions**
- 4. Notions of Security
- 5. Critical Attacks Semantic Secure Conversions
- 6. Reducing the Key Size
- 7. Reducing the Key Size LDPC codes
- 8. Reducing the Key Size MDPC codes
- 9. Implementation

The security of the McEliece Cryptosystem is based in two assumptions:

The security of the McEliece Cryptosystem is based in two assumptions:

Assumption 1: Decoding a random linear code is a difficult problem.

The security of the McEliece Cryptosystem is based in two assumptions:

Assumption 1: Decoding a random linear code is a difficult problem.

Assumption 2: The generator matrix of a Goppa code looks random.

Syndrome Decoder

Given an $[n, k]_q$ code C with parity check matrix $H \in \mathbb{F}_q^{(n-k) \times n}$. Let $\mathbf{y} \in \mathbb{F}_q^n$ be the **received word**.

Syndrome Decoder

Given an $[n, k]_q$ code C with parity check matrix $H \in \mathbb{F}_q^{(n-k) \times n}$. Let $\mathbf{y} \in \mathbb{F}_q^n$ be the **received word**.

Assumption 1: Decoding a random linear code is a difficult problem.

The Syndrome Decoding (SD) problem

Assumption 1: Decoding a random linear code is a difficult problem.

The Syndrome Decoding (SD) problem

→ A matrix
$$H \in \mathbb{F}_2^{(n-k) \times n}$$

Assumption 1: Decoding a random linear code is a difficult problem.

The Syndrome Decoding (SD) problem

Input:

→ A matrix $H \in \mathbb{F}_{2}^{(n-k) \times n}$

→ A syndrome
$$\mathbf{s} \in \mathbb{F}_2^{n-k}$$

Assumption 1: Decoding a random linear code is a difficult problem.

The Syndrome Decoding (SD) problem

- → A matrix $H \in \mathbb{F}_2^{(n-k) \times n}$ → A syndrome $\mathbf{s} \in \mathbb{F}_2^{n-k}$

→ A weight
$$w \in \mathbb{Z}$$

Assumption 1: Decoding a random linear code is a difficult problem.

The Syndrome Decoding (SD) problem

Output

(Decision): Does $\mathbf{e} \in \mathbb{F}_2^n$ of $w_H(\mathbf{e}) \le w$ such that $\mathbf{e}H^T = \mathbf{s}$ exists?

NP-complete

E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg. *On the Inherent Intractability of Certain Coding Problems.* IEEE Trans. Inf. Theory. Vol. 24, pp. 384-386, 1978.

A. Barg.

Complexity Issues in Coding Theory. Chapter 7, in Handbock of Coding Theory, 1998.

- → A matrix $H \in \mathbb{F}_2^{(n-k) \times n}$
- → A syndrome $\mathbf{s} \in \mathbb{F}_2^{n-k}$

A weight
$$w \in \mathbb{Z}$$

Assumption 1: Decoding a random linear code is a difficult problem.

The Syndrome Decoding (SD) problem

Output

(Decision): Does $\mathbf{e} \in \mathbb{F}_2^n$ of $w_H(\mathbf{e}) \le w$ such that $\mathbf{e}H^T = \mathbf{s}$ exists? (Computational): Find $\mathbf{e} \in \mathbb{F}_2^n$ of $w_H(\mathbf{e}) \le w$ such that $\mathbf{e}H^T = \mathbf{s}$ NP-complete NP-difficult

E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg. *On the Inherent Intractability of Certain Coding Problems.* IEEE Trans. Inf. Theory. Vol. 24, pp. 384-386, 1978.

ī.

Complexity Issues in Coding Theory. Chapter 7, in Handbock of Coding Theory, 1998.

- → A matrix $H \in \mathbb{F}_2^{(n-k) \times n}$
- → A syndrome $\mathbf{s} \in \mathbb{F}_2^{n-k}$

A weight
$$w \in \mathbb{Z}$$

Assumption 1: Decoding a random linear code is a difficult problem.

The Bounded-Distance Decoding problem

- → A matrix $H \in \mathbb{F}_2^{(n-k) \times n}$
- → A syndrome $\mathbf{s} \in \mathbb{F}_2^{n-k}$

→ A weight $w \in \mathbb{Z}$

Assumption 1: Decoding a random linear code is a difficult problem.

The Bounded-Distance Decoding problem

→ A matrix H ∈
$$\mathbb{F}_2^{(n-k) \times n}$$
→ A syndrome s ∈ \mathbb{F}_2^{n-k}
→ A weight w ≤ $\frac{d-1}{2}$

Assumption 1: Decoding a random linear code is a difficult problem.

The Bounded-Distance Decoding problem

(Computational): Find
$$\mathbf{e} \in \mathbb{F}_2^n$$
 of $w_H(\mathbf{e}) \leq \frac{d-1}{2}$ such that $\mathbf{e}H^T = \mathbf{s}$

Conjectured NP-Hard

→ A matrix H ∈
$$\mathbb{F}_2^{(n-k) \times t}$$
→ A syndrome s ∈ \mathbb{F}_2^{n-k}
→ A weight w ≤ $\frac{d-1}{2}$

Assumption 1: Decoding a random linear code is a difficult problem.

The Bounded-Distance Decoding problem

(Computational): Find
$$\mathbf{e} \in \mathbb{F}_2^n$$
 of $w_H(\mathbf{e}) \leq \frac{d-1}{2}$ such that $\mathbf{e}H^T = \mathbf{s}$

Conjectured NP-Hard

A. Barg.

Complexity Issues in Coding Theory. Chapter 7, in Handbock of Coding Theory, 1998.

Input:

4

Assumption 1: Decoding a random linear code is a difficult problem.

The Goppa Parameterized Syndrome Decoding

→ A matrix
$$H \in \mathbb{F}_2^{(n-k) \times n}$$

→ A syndrome $\mathbf{s} \in \mathbb{F}_2^{n-k}$

Assumption 1: Decoding a random linear code is a difficult problem.

The Goppa Parameterized Syndrome Decoding

Input:

→ A matrix $H \in \mathbb{F}_2^{(n-k) \times n}$ with k = n - mtand $n = 2^m$

→ A syndrome
$$\mathbf{s} \in \mathbb{F}_2^{n-k}$$

Assumption 1: Decoding a random linear code is a difficult problem.

The Goppa Parameterized Syndrome Decoding

(Computational): Find
$$\mathbf{e} \in \mathbb{F}_2^n$$
 of $w_H(\mathbf{e}) \le \frac{n-k}{2}$ such that $\mathbf{e}H^T = \mathbf{s}$ NP-difficult

Input:

→ A matrix $H \in \mathbb{F}_2^{(n-k) \times n}$ with k = n - mtand $n = 2^m$

→ A syndrome
$$\mathbf{s} \in \mathbb{F}_2^{n-k}$$

Assumption 1: Decoding a random linear code is a difficult problem.

The Goppa Parameterized Syndrome Decoding

(Computational): Find $\mathbf{e} \in \mathbb{F}_2^n$ of $w_H(\mathbf{e}) \leq \frac{n-k}{2}$ such that $\mathbf{e}H^T = \mathbf{s}$

M. Finiasz.

Nouvelles constructions utilisant des codes correcteurs d'erreurs en cryptographie à clef publique. PhD thesis, INRIA - Ecole Polytechnique, 2004

Input:

→ A matrix $H \in \mathbb{F}_2^{(n-k) \times n}$ with k = n - mtand $n = 2^m$

→ A syndrome
$$\mathbf{s} \in \mathbb{F}_2^{n-k}$$

Assumption 2: The generator matrix of a Goppa code looks random.

Assumption 2: The generator matrix of a Goppa code looks random.

 \mathcal{K}_{Goppa} = All generator matrices of a [*n*, *k*]-binary Goppa code

Assumption 2: The generator matrix of a Goppa code looks random.

 \mathcal{K}_{Goppa} = All generator matrices of a [*n*, *k*]-binary Goppa code

Goppa Code Distinguishing (GCD) problem

Conjectured NP-hard

INPUT: A matrix $G \in \mathbb{F}_2^{k \times n}$

OUTPUT: Is $G \in \mathcal{K}_{Goppa}$?

1. There exists an efficient distinguisher for high-rate codes.

J. - Faugère, V. Gauthier-Umana, A. Otmani, L. Perret and J. P. Tillich *A Distinguisher for High-Rate McEliece Cryptosystems*. IEEE Trans. Inf. Theory, 59(10), pp. 6830-6844, 2013.

Assumption 2: The generator matrix of a Goppa code looks random.

 \mathcal{K}_{Goppa} = All generator matrices of a [*n*, *k*]-binary Goppa code

Goppa Code Distinguishing (GCD) problem

Conjectured NP-hard

INPUT: A matrix $G \in \mathbb{F}_2^{k \times n}$

OUTPUT: Is $G \in \mathcal{K}_{\text{Goppa}}$?

1. There exists an efficient distinguisher for high-rate codes.

J. . Faugère, V. Gauthier-Umana, A. Otmani, L. Perret and J. P. Tillich

A Distinguisher for High-Rate McEliece Cryptosystems. IEEE Trans. Inf. Theory. 59(10), pp. 6830-6844, 2013.

2. **General case:** best-known attacks are based on the *support splitting algorithm* and have **exponential runtime**.

P. Loidreau, N. Sendrier Weak keys in McEliece public-key cryptosystem. IEEE Trans. Inf. Theory 47(3):1207âÅŞ1212

We have seen that:

The **general decoding problem** of a linear code whose parameters are those of a binary Goppa code is in the average case difficult.

There exists no efficient distinguisher for Goppa codes

2. McEliece Cryptosystem

- 1. Formal Definition
- 2. Security-Reduction Proof
- 3. McEliece Assumptions
- 4. Notions of Security
- 5. Critical Attacks Semantic Secure Conversions
- 6. Reducing the Key Size
- 7. Reducing the Key Size LDPC codes
- 8. Reducing the Key Size MDPC codes
- 9. Implementation