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Formal definition of Public-Key Cryptography
P =

Plaintext
Space

C =
Ciphertext

Space
Kp =

Public-Key
Space

Ks =
Secret-Key

Space

1. Key generation algorithm: KEYGEN

K ∈ N
Security parameter KEYGEN kp ∈ Kp ks ∈ Ks

Ü Run in expected polynomial time ∼ O(Kc)
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Formal definition of Public-Key Cryptography
K ∈ N

Security parameter KEYGEN kp ∈ Kp ks ∈ Ks

m ∈ P ENCRYPT ENCRYPT(m,Kp) = y ∈ C

Kp ∈ Kp

c ∈ C DECRYPT DECRYPT(c,Ks) = m ∈ P , or invalid
ciphertext

Ks ∈ Ks

Ü It is required that: DECRYPT (ENCRYPT(m,Kp),Ks) = m
Ü Fasten known attack should requires ≥ 2K bit operations4



The McEliece Cryptosystem

Advantages:

1. Fast ENCRYPT and DECRYPT.
2. Post-quantum cryptosystem.

Drawback:

ã Large key size.

Security of the McEliece scheme is based on:

1. Hardness of decoding random linear codes
2. Distinguishing Goppa codes

McEliece introduced the first PKC based
on Error-Correcting Codes in 1978.

R. J. McEliece.
A public-key cryptosystem based on algebraic coding theory.
DSN Progress Report, 42-44:114-116, 1978.5
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The McEliece Cryptosystem

Consider
(
F

)
family of codes

with an efficient
decoding algorithm

Indistinguishable
from random codes

Key Generation Algorithm:

1. G ∈ Fk×n
q a generator matrix for C ∈ F

2. AC an “Efficient” decoding algorithm for C which corrects up to t errors.

Public Key: Kpub = (G, t)
Private Key: Ksecret = (AC)
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The McEliece Cryptosystem
Encryption Algorithm:
Encrypt a message m ∈ Fk

q as

ENCRYPT(m) = mG + e = y

where e is a random error vector of weight at most t .

Decryption Algorithm:
Using Ksecret , the receiver obtain m.

DECRYPT(y) = AC(y) = m

Parameters Key size Security level
[1024,524,101]2 67 ko 262

[2048,1608,48]2 412 ko 296
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The Niederreiter Cryptosystem

Differences with the McEliece cryptosystem:

1. The public key is a parity check matrix. This improve-
ment reduce the key size.

2. The secret key is an efficient syndrome decoder
3. The encryption mechanism

Niederreiter presents a dual version of
McEliece (which is equivalent in terms of

security) in 1986.

H. Niederreiter. (1986).
Knapsack-type crypto system and algebraic coding theory.
Problems of Control and Information Theory.
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The Niederreiter Cryptosystem
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)
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Syndrome decoding
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Indistinguishable
from random codes

Key Generation Algorithm:

1. H ∈ F(n−k)×n
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The McEliece Cryptosystem
Encryption Algorithm:
Encrypt a message m ∈ Fk

q of weight ≤ t

ENCRYPT(m) = mHT ∈ Fn−k
2

Decryption Algorithm:
Using Ksecret , the receiver obtain m.

DECRYPT(y) = DC(y) = m

Parameters Key size Security level
[256,128,129]256 67 ko 295
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Cryptanalysis - McEliece scheme

We have mainly 2 ways of cryptanalyzing the McEliece system:

1. Message Attacks
• Address the problem of decoding a random linear code
• More efficient Message-Attacks Ü Larger codes

2. Key Attacks
• Try to retrieve the code structure
• Efficiently applied to: GRS codes, subcodes of GRS codes, Reed-Muller

codes, AG codes, Concatenated codes, ...
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