Code-Based Cryptography

McEliece Cryptosystem

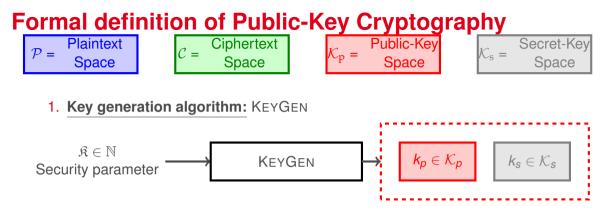
I. Márquez-Corbella

Code-Based Cryptography

- 1. Error-Correcting Codes and Cryptography
- 2. McEliece Cryptosystem
- 3. Message Attacks (ISD)
- 4. Key Attacks
- 5. Other Cryptographic Constructions Relying on Coding Theory

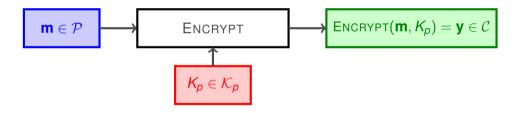
1. Formal Definition

- 2. Security-Reduction Proof
- 3. McEliece Assumptions
- 4. Notions of Security
- 5. Critical Attacks Semantic Secure Conversions
- 6. Reducing the Key Size
- 7. Reducing the Key Size LDPC codes
- 8. Reducing the Key Size MDPC codes
- 9. Implementation



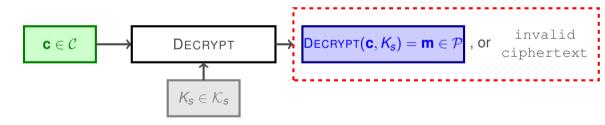
→ Run in expected polynomial time $\sim \mathcal{O}(\mathfrak{K}^c)$

2. Encryption algorithm: ENCRYPT

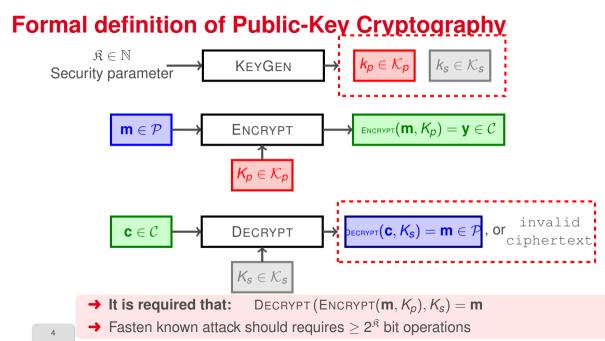


→ Run in expected polynomial time $\sim \mathcal{O}(\mathfrak{K}^c)$

3. Decryption algorithm: DECRYPT



→ Run in polynomial time



McEliece introduced the first PKC based on Error-Correcting Codes in 1978.

R. J. McEliece.

Security of the McEliece scheme is based on:

- 1. Hardness of decoding random linear codes
- 2. Distinguishing Goppa codes

McEliece introduced the first PKC based on Error-Correcting Codes in 1978.

5

R. J. McEliece.

Advantages:

- 1. Fast ENCRYPT and DECRYPT.
- 2. Post-quantum cryptosystem.

Security of the McEliece scheme is based on:

- 1. Hardness of decoding random linear codes
- 2. Distinguishing Goppa codes

McEliece introduced the first PKC based on Error-Correcting Codes in 1978.

5

R. J. McEliece.

Advantages:

- 1. Fast ENCRYPT and DECRYPT.
- 2. Post-quantum cryptosystem.

Drawback:

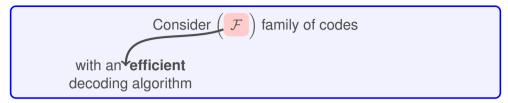
Large key size.

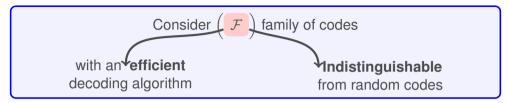
Security of the McEliece scheme is based on:

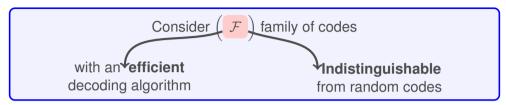
- 1. Hardness of decoding random linear codes
- 2. Distinguishing Goppa codes

McEliece introduced the first PKC based on Error-Correcting Codes in 1978.

R. J. McEliece.







Key Generation Algorithm:

- 1. $G \in \mathbb{F}_{q}^{k \times n}$ a generator matrix for $\mathcal{C} \in \mathcal{F}$
- 2. $\mathcal{A}_{\mathcal{C}}$ an "Efficient" decoding algorithm for \mathcal{C} which corrects up to *t* errors.

Public Key: $\mathcal{K}_{pub} = (G, t)$ Private Key: $\mathcal{K}_{secret} = (\mathcal{A}_{\mathcal{C}})$

Encryption Algorithm:

Encrypt a message $\mathbf{m} \in \mathbb{F}_q^k$ as

 $\mathsf{Encrypt}(\mathbf{m}) = \mathbf{m}\mathbf{G} + \mathbf{e} = \mathbf{y}$

where \mathbf{e} is a random error vector of weight at most \mathbf{t} .

Encryption Algorithm:

Encrypt a message $\mathbf{m} \in \mathbb{F}_q^k$ as

 $\mathsf{Encrypt}(\mathbf{m}) = \mathbf{m}\mathbf{G} + \mathbf{e} = \mathbf{y}$

where \mathbf{e} is a random error vector of weight at most \mathbf{t} .

Decryption Algorithm: Using \mathcal{K}_{secret} , the receiver obtain m.

 $\mathsf{Decrypt}(\boldsymbol{y}) = \boldsymbol{\mathcal{A}_{\mathcal{C}}}(\boldsymbol{y}) = \boldsymbol{m}$

Encryption Algorithm:

Encrypt a message $\mathbf{m} \in \mathbb{F}_q^k$ as

 $\mathsf{Encrypt}(\mathbf{m}) = \mathbf{m}\mathbf{G} + \mathbf{e} = \mathbf{y}$

where \mathbf{e} is a random error vector of weight at most \mathbf{t} .

Decryption Algorithm:

Using \mathcal{K}_{secret} , the receiver obtain **m**.

 $\mathsf{Decrypt}(y) = \boldsymbol{\mathcal{A}_{\mathcal{C}}}(y) = \boldsymbol{m}$

Parameters	Key size	Security level
$[1024, 524, 101]_2$	67 ko	2 ⁶²
$[2048, 1608, 48]_2$	412 ko	2 ⁹⁶

Niederreiter presents a dual version of McEliece (which is equivalent in terms of security) in 1986.

H. Niederreiter. (1986).

Knapsack-type crypto system and algebraic coding theory. Problems of Control and Information Theory.

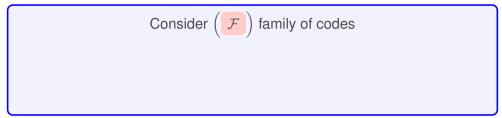
Differences with the McEliece cryptosystem:

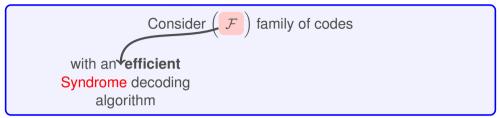
- 1. The public key is a parity check matrix. This improvement reduce the key size.
- 2. The secret key is an efficient syndrome decoder
- 3. The encryption mechanism

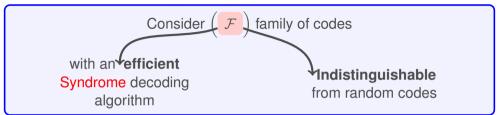
Niederreiter presents a dual version of McEliece (which is equivalent in terms of security) in 1986.

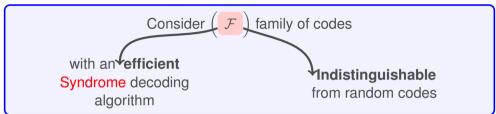
H. Niederreiter. (1986).

Knapsack-type crypto system and algebraic coding theory. Problems of Control and Information Theory.









Key Generation Algorithm:

1. $H \in \mathbb{F}_q^{(n-k) \times n}$ a parity check matrix for $\mathcal{C} \in \mathcal{F}$ 2. $\mathcal{D}_{\mathcal{C}}$ an "Efficient" Syndrome Dec. for \mathcal{C} which corrects up to *t* errors.

Public Key: $\mathcal{K}_{pub} = (G, t)$ Private Key: $\mathcal{K}_{secret} = (\mathcal{D}_{\mathcal{C}})$

Encryption Algorithm:

Encrypt a message $\mathbf{m} \in \mathbb{F}_q^k$ of weight $\leq t$

$$\mathsf{E}\mathsf{NCRYPT}(\mathsf{m}) = \mathsf{m}\mathsf{H}^{\mathsf{T}} \in \mathbb{F}_2^{n-k}$$

Encryption Algorithm:

Encrypt a message $\mathbf{m} \in \mathbb{F}_q^k$ of weight $\leq t$

$$\mathsf{ENCRYPT}(\mathbf{m}) = \mathbf{m} \mathbf{H}^T \in \mathbb{F}_2^{n-k}$$

Decryption Algorithm:

Using \mathcal{K}_{secret} , the receiver obtain **m**.

 $\mathsf{Decrypt}(\boldsymbol{y}) = \boldsymbol{\mathcal{D}_{\mathcal{C}}}(\boldsymbol{y}) = \boldsymbol{m}$

Encryption Algorithm:

Encrypt a message $\mathbf{m} \in \mathbb{F}_q^k$ of weight $\leq t$

$$\mathsf{ENCRYPT}(\mathbf{m}) = \mathbf{m} \mathbf{H}^T \in \mathbb{F}_2^{n-k}$$

Decryption Algorithm:

Using \mathcal{K}_{secret} , the receiver obtain **m**.

 $\mathsf{Decrypt}(\boldsymbol{y}) = \boldsymbol{\mathcal{D}_{\mathcal{C}}}(\boldsymbol{y}) = \boldsymbol{m}$

Parameters	Key size	Security level
$[256, 128, 129]_{256}$	67 ko	2 ⁹⁵

Cryptanalysis - McEliece scheme

We have mainly 2 ways of cryptanalyzing the McEliece system:

Cryptanalysis - McEliece scheme

We have mainly 2 ways of cryptanalyzing the McEliece system:

1. Message Attacks

- Address the problem of decoding a random linear code
- More efficient Message-Attacks → Larger codes

Cryptanalysis - McEliece scheme

We have mainly 2 ways of cryptanalyzing the McEliece system:

1. Message Attacks

- Address the problem of decoding a random linear code
- More efficient Message-Attacks → Larger codes

2. Key Attacks

- Try to retrieve the code structure
- Efficiently applied to: GRS codes, subcodes of GRS codes, Reed-Muller codes, AG codes, Concatenated codes, ...

- 1. Formal Definition
- 2. Security-Reduction Proof
- 3. McEliece Assumptions
- 4. Notions of Security
- 5. Critical Attacks Semantic Secure Conversions
- 6. Reducing the Key Size
- 7. Reducing the Key Size LDPC codes
- 8. Reducing the Key Size MDPC codes
- 9. Implementation