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Parity check matrix

Let C be an [n, k]4 code.

H is a parity check matrix of C <= (C is the null space of H

That is:
C={xeFy|xH™ =0}
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[7,4]-Hamming code

(my, M, mg, my)

Informe:ﬁon bits

rf=my+my;+my mod2

The number of ones
in every circle is even

r,=my +mg+myg mod 2

r, =my+mg+mg mod 2
2



[7,4]-Hamming code
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Informe:ﬁon bits Redundant bits

rf=my+my;+my mod2

The number of ones
in every circle is even

ro =my +mz+myg mod 2

r, =my+mg+mg mod 2
2



[7,4]-Hamming code

(m17m27m37m4) (r1ar27r3)
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Information bits Redundant bits

rf =my+my+my mod2

The number of ones
in every circle is even

ro =my +mz+myg mod 2

r, =my+mg+mg mod 2
3



[7,4]-Hamming code

The redundant information can be obtained from the message by 3
parity checks:

rob = My+M3+ My

rf = mMmy+Mo+My
f3 = My+mM3+My



[7,4]-Hamming code

The redundant information can be obtained from the message by 3

parity checks:
rf = mMmy+Mo+My
rob = My+M3+ My
f3 = My+mM3+My

c = (my,mp, m3, my,rqy,rp, ry) is acodeword <= He' =0

1101100
withH=[1 01 1 0 1 0 | eF*
01 1 0

1
1 0 1
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H contains all nonzero binary
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Binary Hamming Codes

H e nggq such that H contains all nonzero binary
r-tuples exactly once as a column
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binary Hamming code of redundancy r.




Binary Hamming Codes

Binary Hamming Codes

H contains all nonzero binary

H e Fp# =1 such that
r-tuples exactly once as a column

Any code with H as parity-check matrix is a
binary Hamming code of redundancy r.

Binary Hamming codes correct up to 1
error.
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Parity Check Matrix

A code can have more than one parity-check matrix!

Proposition: Characterization of a parity-check matrix

Let C be an [n, k] code with generator matrix G

H is a parity check-matrix of C <= GH' =0

Proof:

From the definition of parity check matrix: cH” =0, forallc € C
Recall that every codeword is of the form: ¢ = mG withm € IF’;
Thus, (mG)H™ =0, for all m € F¥

And we conclude that GH =0




Parity Check Matrix
Proposition: How to get a parity check-matrix?

—HK Nk, — K Nk,
1 0 1 0
G=| . A k < H=| —-AT n—k
0 1 0 1
is a generator matrix for C is a parity-check matrix for C

Proof:
“—" We clearly have HG" =0 = —-AT + AT
Thus, C C ker(H)
Since rank(H) = n— k = dim(ker(H)) = k = dim(C)
Hence, H is a parity check matrix for C

‘=" The converse is proved similarly.
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Dual Code

G is a generator PN H is a generator
matrix for C matrix for C*

The dual code

Let C be an [n, k]q code. We define the dual code C* as

ct={xeFj|x- ¢=0, VcecC}




Dual Code

G is a generator PN H is a generator
matrix for C matrix for C*

The dual code

Let C be an [n, k]q code. We define the dual code C* as

ct={xeFj|x-

4, =0, Ve e C}

For x,y € IFj the inner product is defi(ed by

X-y=Xy1+ -+ Xn¥n =D iq XiVi



Dual Code

Proposition:

Let C be an [n, k] code. Then,

the dual code C* is an [n, n — k]4 code.

%he definition of dual code, the following statements are equivalents:
XxeCt < c¢c-x=0,forallceC
< mGx’ =0, forallmeF¥
— Gx' =0
Thus, C* = ker(G)

Moreover, since rank(G) = k = dim(C+) =n—k
We can also deduce that G is a parity check matrix for C*.



Dual Code

Proposition:

Let C be an [n, k] code with generator matrix G. Then,

et =c
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Trapdoor one-way functions - Decoder
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Trapdoor one-way functions - Decoder

Q}\
Encoder = Matrix Multiplication I Message I :| Cleelale I

ﬁ E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg.
On the Inherent Intractability of Certain Coding Problems.
IEEE Trans. Inf. Theory. Vol. 24, pp. 384-386, 1978.

ﬁ A. Barg.

DeCOdIng IS N P_Complete Complexity Issues in Coding Theory.
A R D Chapter 7, in Handbock of Coding Theory, 1998.

|H_
Efficient decoder for certain families of codes
EASY (with TRAPDOOR information)



1. Error-Correcting Codes and Cryptography

Introduction | - Cryptography
Introduction Il - Coding Theory
Encoding (Linear Transformation)
Parity Checking

Error Correcting Capacity
Decoding (A Difficult Problem)
Reed-Solomon Codes

Goppa Codes

McEliece Cryptosystem

© N Ok wbd =

CODE-BASED CRYPTOGRAPHY



