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Minimum Distance Decoding (MDD)
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Brute Force

Let y be
the received word

cN

...

c2

c1

with N = qk

dH(cN , y)

dH(c2, y)
dH(c1, y)

Return: ci such that
dH(ci , y) is minimized

The complexity is O
(
nqk

)

First idea: Brute Force
Compute the Hamming distance of the received word with all codewords.

1. Enumerate all codewords of C.
2. If y is the received word.

Compute the Hamming distance dH(c, y) , ∀c ∈ C
3. Return the codeword that minimizes dH
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Syndrome
Let C be an [n, k ]q code with parity check matrix H

c ∈ C =⇒ HcT = 0

Syndrome of a vector

The syndrome of a vector x ∈ Fn
q is the vector S(x) = HxT ∈ Fn−k

q

sent codeword

y = c + e

received word error vector

H y T
= H( c + e )T = H c T︸ ︷︷ ︸

=0

+H e T
= H e T
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Syndrome Decoding - Lookup table

Let y be
the received word

S(eN) = SN

...

S(e2) = S2

S(e1) = S1

If Si = S(y), Return: y− ei

Suppose we want to correct all patterns of ≤ t errors

1. Precompute the syndrome corresponding to 0, 1, . . . , t
Number of Syndromes to pre-compute and store:(

n
0

)
+ (q − 1)

(
n
1

)
+ (q − 1)2

(
n
2

)
+ . . . + (q − 1)t

(
n
t

)

2. Compute the Syndrome of the received word S(y)
Ü If there exists e ∈ Fn

q with wH(e) ≤ t : S(e) = S(y) =⇒ Return: y− e
Ü Otherwise, =⇒ Return: FAILURE
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Gilbert-Varshamov bound

GV bound

d−2∑
i=0

(q − 1)i

(
n − 1

i

)
< qn−k =⇒ Exists an [n, k , d ]q code

Proof:

Let H ∈ F(n−k)×n
q be a parity check matrix of C

every d − 1 columns of H
are Linear independent

We construct by induction the columns h1, . . . , hn ∈ Fn−k
q of H.
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Proof (Part II)
We choose:

• h1 ∈ Fn−k
q any nonzero vector

• h2 ∈ Fn−k
q any vector that is NOT a multiple of h1

• . . .
• hj ∈ Fn−k

q any vector that is NOT a LC of ≤ (d − 2) of
{
h1, . . . , hj−1

}
Let j < n. Exists hj+1 with the above property if:

Number of LC of ≤ (d − 2)
of {h1, . . . , hj}

Total number of vectors
in Fn

q but one

≤ qn−k − 1
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Gilbert Varshamov distance

Gilbert-Varshamov (GV) distance
The GV distance of an [n, k ]q code is the maximal integer d0 such that:

d0−1∑
i=0

(
n
i

)
(q − 1)i ≤ qn−k

8



Number of codewords of a given weight

Aw(C) = | {c ∈ C | wH(c) = w} |

Distinct codewords in C
of weight exactly w

In a binary random code: E[Aw(C)] =
(n

w

)
|C|

2n =

(n
w

)
2n−k

In average:

Exists c ∈ C with wH(c) = w ⇐⇒
(

n
w

)
> 2n−k

⇐⇒ w is closed to
the GV distance
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The Syndrome Decoding (SD) problem
The Syndrome Decoding (SD) problem

Output
(Decision): Does e ∈ Fn

2 of wH(e) ≤ w such that eHT = s exists? NP-complete
(Computational): Find e ∈ Fn

2 of wH(e) ≤ w such that eHT = s NP-difficult

E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg.
On the Inherent Intractability of Certain Coding Problems.
IEEE Trans. Inf. Theory. Vol. 24, pp. 384-386, 1978.

A. Barg.
Complexity Issues in Coding Theory.
Chapter 7, in Handbock of Coding Theory, 1998.

Hn − k

n

e
×

= s

Input:

Ü A matrix H ∈ F(n−k)×n
2

Ü A syndrome s ∈ Fn−k
2

Ü A weight w ∈ Z
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General Decoding
Input:

Ü A parity-check matrix H ∈ F(n−k)×n
2

Ü A generator matrix G ∈ Fk×n
2

Ü A received vector y ∈ Fn−k
2

Ü A weight w ∈ Z

SD
Find e ∈ Fn

2 of wH(e) ≤ w such that
eHT = yHT = s

MDD
Find m ∈ Fk

2 such that
wH(y−mG) ≤ w

Hn − k

n

e×
=s

G k

n

m
k

−y
n

= e
n

11
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Computational Analysis of Syndrome Decoding

(Possibly after permuting some columns)

Case w = n−k
2

1 0
. . .

0 1

In average:
Exists c ∈ C with wH(c) = w ⇐⇒

(n
w
)

> 2n−k

⇐⇒ w is closed to the GV distance

w

cost (log) of ISD
Binary codes

0 dGV n − k
2

one solution many solutions

Li
ne

ar
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Trapdoor one-way functions - Decoder

EASY
Encoder = Matrix Multiplication

Message
Lin

ea
r

Enc
od

er

= Codeword

HARD
Decoding is NP-complete

E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg.
On the Inherent Intractability of Certain Coding Problems.
IEEE Trans. Inf. Theory. Vol. 24, pp. 384-386, 1978.

A. Barg.
Complexity Issues in Coding Theory.
Chapter 7, in Handbock of Coding Theory, 1998.

EASY(with TRAPDOOR information)
Efficient decoder for certain families of codes
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