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Abstract-Two kinds of contemporary developments in cryp- 
tography are examined. Widening applications of teleprocessing 
have given rise to a need for new types of cryptographic systems, 
which minimize the need for secure key distribution channels and 
supply the equivalent of a written signature. This paper suggests 
ways to solve these currently open problems. It also discusses how 
the theories of communication and computation are beginning to 
provide the tools to solve cryptographic problems of long stand- 
ing. 

I. INTRODUCTION 

W E STAND TODAY on the brink of a revolution in 
cryptography. The development of cheap digital 

hardware has freed it from the design limitations of me- 
chanical computing and brought the cost of high grade 
cryptographic devices down to where they can be used in 
such commercial applications as remote cash dispensers 
and computer terminals. In turn, such applications create 
a need for new types of cryptographic systems which 
minimize the necessity of secure key distribution channels 
and supply the equivalent of a written signature. At the 
same time, theoretical developments in information theory 
and computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science. 

The development of computer controlled communica- 
tion networks pron$ses effortless and inexpensive contact 
between people or computers on opposite sides of the 
world, replacing most mail and many excursions with 
telecommunications. For many applications these contacts 
must be made secure against both eavesdropping.and the 
injection of illegitimate messages. At present, however, the 
solution of security problems lags well behind other areas 
of communications technology. Contemporary cryp- 
tography is unable to meet the requirements, in that its use 
would impose such severe inconveniences on the system 
users, as to eliminate many of the benefits of teleprocess- 
ing. 
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The best known cryptographic problem is that of pri- 
vacy: preventing the unauthorized extraction of informa- 
tion from communications over an insecure channel. In 
order to use cryptography to insure privacy, however, it is 
currently necessary for the communicating parties to share 
a key which is known to no one else. This is done by send- 
ing the key in advance over some secure channel such as 
private courier or registered mail. A private conversation 
between two people with no prior acquaintance-is a com- 
mon occurrence in business, however, and it is unrealistic 
to expect initial business contacts to be postponed long 
enough for keys to be transmitted by some physical means. 
The cost and delay imposed by this key distribution 
problem is a major barrier to the transfer of business 
communications to large teleprocessing networks. 

Section III proposes two approaches to transmitting 
keying information over public (i.e., insecure) channels 
without compromising the security of the system. In a 
public key cryptosystem enciphering and deciphering are 
governed by distinct keys, E and D, such that computing 
D from E is computationally infeasible (e.g., requiring 
lOloo instructions). The enciphering key E can thus be 
publicly disclosed without compromising the deciphering 
key D. Each user of the network can, therefore, place his 
enciphering key in a public directory. This enables any user 
of the system to send a message to any other user enci- 
phered in such a way that only the intended receiver is able 
to decipher it. As such, a public key cryptosystem is a 
multiple access cipher. A private conversation can there- 
fore be held between any two individuals regardless of 
whether they have ever communicated before. Each one 
sends messages to the other enciphered in the receiver’s 
public enciphering key and deciphers the messages he re- 
ceives using his own secret deciphering key. 

We propose some techniques for developing public key 
cryptosystems, but the problem is still largely open. 

Public key distribution systems offer a different ap- 
proach to eliminating the need for a secure key distribution 
channel. In such a system, two users who wish to exchange 
a key communicate back and forth until they arrive at a 
key in common. A third party eavesdropping on this ex- 
change must find it computationally infeasible to compute 
the key from the information overheard, A possible solu- 
tion to the public key distribution problem is given in 
Section III, and Merkle [l] has a partial solution of a dif- 
ferent form. 

A second problem, amenable to cryptographic solution, 
which stands in the way of replacing contemporary busi- 

. 
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Public Key Cryptography
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HARD

EASY
(given the TRAPDOOR information)

Trapdoor one-way 
function
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Trapdoor one-way functions - Decoder

EASY
Encoder = Matrix Multiplication
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HARD
Decoding is NP-complete

E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg.
On the Inherent Intractability of Certain Coding Problems.
IEEE Trans. Inf. Theory. Vol. 24, pp. 384-386, 1978.

A. Barg.
Complexity Issues in Coding Theory.
Chapter 7, in Handbock of Coding Theory, 1998.

EASY(with TRAPDOOR information)
Efficient decoder for certain families of codes
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The McEliece Cryptosystem

Advantages:

1. Fast ENCRYPT and DECRYPT.
2. Post-quantum cryptosystem.

Drawback:

ã Large key size.

Security of the McEliece scheme is based on:

1. Hardness of decoding random linear codes
2. Distinguishing Goppa codes

McEliece introduced the first PKC based
on Error-Correcting Codes in 1978.

R. J. McEliece.
A public-key cryptosystem based on algebraic coding theory.
DSN Progress Report, 42-44:114-116, 1978.
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The McEliece Cryptosystem
Consider

(
F

)
family of codes

with an efficient
decoding algorithm

Indistinguishable
from random codes

Key Generation Algorithm:

1. G ∈ Fk×n
q a generator matrix for C ∈ F

2. AC an “Efficient” decoding algorithm for C which corrects up to t errors.

Public Key: Kpub = (G, t)
Private Key: Ksecret = (AC)

Parameters Key size Security level
[1024,524,101]2 67 ko 262

[2048,1608,48]2 412 ko 296
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The McEliece Cryptosystem
Encryption Algorithm:
Encrypt a message m ∈ Fk

q as

ENCRYPT(m) = mG + e = y

where e is a random error vector of weight at most t .

Decryption Algorithm:
Using Ksecret , the receiver obtain m.

DECRYPT(y) = AC(y) = m
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Which code Family? - GRS codes

â Generalized Reed-Solomon codes
H. Niederreiter.
Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159-166, 1986.

Parameters Key size Security level
[256,128,129]256 67 ko 295

7Attack against this proposal:
V. M. Sidelnikov and S. O. Shestakov.
On the insecurity of cryptosystems based on generalized Reed-Solomon codes.
Discrete Math. Appl., 2:439-444, 1992.
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Which code Family? - Subcodes of GRS codes

â Subcodes of GRS codes
T. Berger and P. Loidreau.
How to mask the structure of codes for a cryptographic use.
Des. Codes Cryptogr., 35:63-79, 2005.

7Attack against this proposal:
C. Wieschebrink.
Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes.
In Post-Quantum Cryptography, volume 6061 of Lecture Notes in Comput. Sci., pages 61-72, 2010.
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Which code Family? - Reed-Muller codes
â Reed-Muller codes

V. Sidelnikov.
A public-key cryptosytem based on Reed-Muller codes.
Discrete Math. Appl., 4(3):191-207, 1994.

Parameters Key size Security level
[1024,176,128]2 22.5 ko 272

[2048,232,256]2 59,4 ko 293

7Attacks against this proposal:
L. Minder and A. Shokrollahi.
Cryptanalysis of the Sidelnikov cryptosystem.
In EUROCRYPT 2007, pages 347-360, 2007.

I. V. Chizhov, and M. A. Borodin.
The failure of McEliece PKC based on Reed-Muller codes.
IACR Cryptology ePrint Archive, 287, 2013.
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Which code Family? - AG codes
â Algebraic Geometry codes

H. Janwa and O. Moreno.
McEliece public crypto system using algebraic-geometric codes.
Designs, Codes and Cryptography, 1996.

Parameters Key size Security level
[171,109,61]128 16 ko 266

7Attacks against this proposal:
C. Faure and L. Minder.
Cryptanalysis of the McEliece cryptosystem over hyperelliptic codes.
Proceedings 11th Int. Workshop on Algebraic and Combinatorial Coding Theory, 2008.

A. Couvreur, I. Márquez-Corbella and R. Pellikaan.
A polynomial time attack against Algebraic Geometry code based Public-Key Cryptosystems.
ISIT 2014, 1446-1450, 2014.
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Which code Family? - Concatenated codes

â Concatenated codes
H. Niederreiter.
Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159-166, 1986.

7Attack against this proposal:
N. Sendrier.
On the concatenated structure of a linear code.
AAECC, 9(3):221-242, 1998
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Which code Family? - Binary Goppa codes

â Binary Goppa codes
R. J. McEliece.
A public-key cryptosystem based on algebraic coding theory.
DSN Progress Report, 42-44:114-116, 1978.

Parameters Key size Security level
[1024,524,101]2 67 ko 262

[2048,1608,48]2 412 ko 296

4McEliece scheme with Goppa codes
has resisted cryptanalysis so far!
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