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Hamming distance
Let x = (x1, . . . , xn) ∈ Fn

q and y = (y1, . . . , yn) ∈ Fn
q

Hamming distance

Hamming distance between x and y is dH(x,y) = | {i | xi 6= yi} |

Hamming weight

The Hamming weight of x is wH(x) = {i | xi 6= 0}

Example
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Let x = (x1, . . . , xn) ∈ Fn
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Hamming distance
The Hamming distance is a metric on Fn

q

For all x, y, z ∈ Fn
q, the following conditions hold:

• NON-NEGATIVITY: dH(x,y) ≥ 0.
Moreover, dH(x,y) = 0⇐⇒ x = y.

• SYMMETRY: dH(x,y) = dH(y,x).

• TRIANGLE INEQUALITY: dH(x,y) ≤ dH(x, z) + dH(z,y)

Ü With this distance Fn
q becomes a metric space.
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Minimum distance
Minimum distance

The minimum distance of C is d(C) = min {dH(c1,c2) | c1,c2 ∈ C and c1 6= c2}

t

≥ d(C)
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Minimum distance = Minimum weight
Proposition 1

Let C be a linear code.
w(C) = d(C)

Proof:

Since C is a linear code we have that:

0 ∈ C and c1 − c2 ∈ C, ∀c1,c2 ∈ C

Then, the results follows from the fact that:

wH(c) = dH(0,c) and dH(c1,c2) = wH(c1 − c2)
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Minimum distance - Parity check matrix
Proposition 2:

Let C be an [n, k ]q code with parity check matrix H:

d(C) = d ⇐⇒ Every set of (d − 1) columns of H
are linearly independent

Proof:
Let H ∈ F(n−k)×n

q be a parity check matrix for C.
It is easy to check that:

∃c ∈ C,c 6= 0 : wH(c) = w ⇐⇒ ∃w columns of H Linearly dependent

Moreover, since d(C) = w(C), then the weight d is achieved by some codeword. That is,

∃c ∈ C : wH(c) = d

Or equivalently, d is the minimal number of columns required for linear dependence.
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Minimum distance - Parity check matrix
Consequence of Proposition 2:

1. d(C) = 1 ⇐⇒ H has a zero column
2. d(C) = 2 ⇐⇒ H has two columns hi ,hj that are dependent
3. In the binary case:

d(C) = 2 ⇐⇒ H has two columns hi ,hj : hi = hj

d(C) = 3 ⇐⇒
{

H has no zero columns
All columns are mutually distinct
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Singleton Bound
Proposition 3: Singleton bound

Let C be an [n, k ]q code. Then d(C) ≤ n − k + 1

This bound is the SINGLETON BOUND

Proof:

Ü The rank of a parity check matrix H for C is n − k .
Ü At most n − k + 1 columns of H are linearly dependent
Ü By Proposition 2: d(C) ≤ n − k + 1
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Error-detecting & Error-correcting capability

c ∈ C
is sent

y = c + e ∈ Fn
q

is received

Noisy
e ∈ Fn

q is called
Error Pattern
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Example

Code Length Up Down Left Right

C1 2 00 10 01 11

C2 3 000 110 011 101

C3 6 000000 111000 001110 110011

Note that:

• C1 can not detect errors.
• C2 can detect but not correct 1 error.
• C3 can detect and correct up to 1 error.
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Error-detection capability

Detectable errors
Let C be an [n, k ]q code of minimum distance d :

Any error pattern of size at most d − 1 can be detected.

Let c ∈ C be the transmitted codeword and e be the error pattern.

Take notice that: If wH(e) ≤ d − 1 =⇒ y = c + e /∈ C
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Error-detection capability

Let c ∈ C be the transmitted codeword and e be the error pattern:

Ü Some error patterns e ∈ Fn
q : wH(e) ≥ d can be detected

Ü Error detection fails when e ∈ C and e 6= 0.

Number of detectable errors:
Let C be an [n, k ]q code.

There are qn − qk error patterns that can be detected.
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Error-correcting capability
c ∈ C is sent y ∈ Fn

q is received

What strategy?

Look for x ∈ C: dH(y,x)
is minimized

(Minimum Distance Decoding)
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Error-correcting capability
Theorem:

Let C be a linear code with minimum distance d :

C can correct t errors ⇐⇒ t < d
2 , i.e. t ≤

⌊d−1
2

⌋
Proof:
Let y be the received word and suppose that t errors have occurred.
If C cannot correct this error pattern then there are two codewords at distance t from the
received codeword.

∃c1,c2 ∈ C
∃e1,e2 ∈ Fq with wH(e1),wH(e2) < t

}
such that y = c1 + e1 = c2 + e2

Thus we have a nonzero codeword of weight smaller than d , i.e.

wH(c1 − c2) = wH(e1 − e2) < 2t < d

which contradicts the minimality of d .
The rest is left as an exercise.
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Error-detecting & Error-correcting capability

Minimum distance d(C) determines capabilities of the code C

• Number of detectable errors: t̂ = d(C)− 1

• Number of correctable errors: t =
⌊

d(C)−1
2

⌋
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Objectives of Coding Theory
The quality of an [n, k ]q code is indicated by:

Ü The Information Rate: k
n

Ü The relative minimum distance d
n

Ü The complexity of the encoding and decoding procedures

The goal of Coding Theory is to provide codes with:

Ú High information rate
Ú High error-correction rate
Ø Low complexity of encoding and decoding
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