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Hamming distance

Hamming distance between x and y is du(X,y) = | {i | Xi # Vi} |
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Hamming distance

The Hamming distance is a metric on Fg

For all x, y, z € g, the following conditions hold:
e NON-NEGATIVITY: dy(X,y) > 0.
Moreover, dy(X,y) =0 <= x =Y.
e SYMMETRY: dy(X,Y) = du(Y, X).

e TRIANGLE INEQUALITY: dy(X,y) < dy(X,2) + du(z,y)

=» With this distance 3 becomes a metric space.




Minimum distance

Minimum distance

The minimum distance of C is d(C) = min {dy(c1,¢2) | ¢1,€2 € C and ¢ # C»}
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Minimum distance = Minimum weight
Proposition 1

Let C be a linear code.
w(C) =d(C)

Proof:

Since C is a linear code we have that:
0eC and c¢i—coel,Veq,cel

Then, the results follows from the fact that:
wy(c) = dp(0,¢) and dy(cy,c2) = wy(cy —C2)



Minimum distance - Parity check matrix
Proposition 2:

Let C be an [n, k]q code with parity check matrix H:

Every set of (d — 1) columns of H

d(C) =d are linearly independent

Proof:
Let H e F")%" be a parity check matrix for C.
It is easy to check that:

JdeeC,c#0 : wy(c)=w <= 3w columns of H Linearly dependent
Moreover, since d(C) = w(C), then the weight d is achieved by some codeword. That is,
dceC : wy(e)=d

Or equivalently, d is the minimal number of columns required for linear dependence.
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Minimum distance - Parity check matrix

Consequence of Proposition 2:

1. d(C)=1 <= H hasa zerocolumn
2. d(C)=2 <= H hastwo columns h;, h; that are dependent
3. In the binary case:

d(C) =2 <= H hastwo columns h;, hj - h = hj

H has no zero columns
All columns are mutually distinct

diC) =38 «~— {
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Singleton Bound

Proposition 3: Singleton bound

Let C be an [n, k] code. Then d(C) < n—k +1

This bound is the SINGLETON BOUND

Proof:

=» The rank of a parity check matrix H for C is n — k.
=» At most n— k + 1 columns of H are linearly dependent
=» By Proposition 2: d(C) < n—k + 1



Error-detecting & Error-correcting capability
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Example
Code Length  Up Down Left Right

C1 2 00 10 01 11
Co 3 000 110 011 101
C3 6 000000 111000 001110 110011

Note that:
e (4 can not detect errors.
e (> can detect but not correct 1 error.
e (3 can detect and correct up to 1 error.



Error-detection capability

Detectable errors
Let C be an [n, k] code of minimum distance d:

Any error pattern of size at most d — 1 can be detected.

T e— —

Let ¢ € C be the transmitted codeword and e be the error pattern.

Take notice that: fwyle)<d-1=—= y=c+e¢C(C
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Error-detection capability

Let ¢ € C be the transmitted codeword and e be the error pattern:

=» Some error patterns e € Fg : wy(e) > d can be detected

=» Error detection fails when e € C and e # 0.
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Error-detection capability

Let ¢ € C be the transmitted codeword and e be the error pattern:

=» Some error patterns e € Fg : wy(e) > d can be detected

=» Error detection fails when e € C and e # 0.

Number of detectable errors:
Let C be an [n, k]4 code.

There are " — g* error patterns that can be detected.

11



Error-correcting capability

c € Cis sent y e IFg is received
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Error-correcting capability

c c Cis sent

12

y € [y is received

E What strategy?

]
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Error-correcting capability

c c Cis sent

12

y € [y is received

Look for x € C: dy(y, X)

(Minimum Distance Decoding)

What strategy?

iS minimized



Error-correcting capability

Let C be a linear code with minimum distance d:

C cancorrect terrors <— < g, ie. t < L%J

Proof:

Let y be the received word and suppose that t errors have occurred.

If C cannot correct this error pattern then there are two codewords at distance t from the
received codeword.

Jeq,co € C
Jdeqs,e0 € ]Fq with WH(e1 ),WH(ez) <t

Thus we have a nonzero codeword of weight smaller than d, i.e.

} suchthaty =¢y +e1 =c>+ ez

WH(C1 — 02) = WH(91 — 92) <2t<d

which contradicts the minimality of d.
The rest is left as an exercise.
13



Error-detecting & Error-correcting capability

Minimum distance d(C) determines capabilities of the code C

14



Objectives of Coding Theory
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Objectives of Coding Theory

The quality of an [n, k|4 code is indicated by:
- The Information Rate: &

- The relative minimum distance ¢

=> The complexity of the encoding and decoding procedures

The goal of Coding Theory is to provide codes with:

~ High information rate
~ High error-correction rate
~ Low complexity of encoding and decoding
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