Code-Based Cryptography

Error-Correcting Codes and Cryptography

1. Error-Correcting Codes and Cryptography

- 1. Introduction I Cryptography
- 2. Introduction II Coding Theory
- 3. Encoding (Linear Transformation)
- 4. Parity Checking
- 5. Error Correcting Capacity
- 6. Decoding (A Difficult Problem)
- 7. Reed-Solomon Codes
- 8. Goppa Codes
- 9. McEliece Cryptosystem

Let
$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$$
 and $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_q^n$

Hamming distance

Hamming distance between **x** and **y** is $d_H(\mathbf{x}, \mathbf{y}) = |\{i \mid x_i \neq y_i\}|$

Let
$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$$
 and $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_q^n$

Hamming distance

Hamming distance between **x** and **y** is $d_H(\mathbf{x}, \mathbf{y}) = |\{i \mid x_i \neq y_i\}|$

Hamming weight

The **Hamming weight** of **x** is
$$w_H(\mathbf{x}) = \{i \mid x_i \neq 0\}$$

Let
$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$$
 and $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_q^n$

Hamming distance

Hamming distance between **x** and **y** is $d_H(\mathbf{x}, \mathbf{y}) = |\{i \mid x_i \neq y_i\}|$

Hamming weight

The **Hamming weight** of **x** is
$$w_H(\mathbf{x}) = \{i \mid x_i \neq 0\}$$

Example

$$\begin{array}{cccc} \mathbf{x} \rightarrow 1 & 1 & 1 & 1 \\ \mathbf{y} \rightarrow 1 & \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{array} \longrightarrow d_H(\mathbf{x}, \mathbf{y}) = 2$$

Let
$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$$
 and $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_q^n$

Hamming distance

Hamming distance between **x** and **y** is $d_H(\mathbf{x}, \mathbf{y}) = |\{i \mid x_i \neq y_i\}|$

Hamming weight

The **Hamming weight** of **x** is
$$w_H(\mathbf{x}) = \{i \mid x_i \neq 0\}$$

Example

$$\begin{array}{ccc} \mathbf{x} \rightarrow & \mathsf{I} \, \mathsf{U} \, \mathsf{T} \\ \mathbf{y} \rightarrow & \mathsf{D} \, \mathsf{U} \, \mathsf{T} \end{array} \xrightarrow{} & d_H(\mathbf{x}, \mathbf{y}) = 1 \\ & \uparrow \end{array}$$

Let
$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_q^n$$
 and $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_q^n$

Hamming distance

Hamming distance between **x** and **y** is $d_H(\mathbf{x}, \mathbf{y}) = |\{i \mid x_i \neq y_i\}|$

Hamming weight

The Hamming weight of **x** is
$$w_H(\mathbf{x}) = \{i \mid x_i \neq 0\}$$

Example

$$\mathbf{x} \rightarrow 20010 \longrightarrow W_H(\mathbf{x}) = 2$$

The Hamming distance is a metric on \mathbb{F}_{q}^{n}

→ With this distance \mathbb{F}_{a}^{n} becomes a metric space.

The Hamming distance is a metric on \mathbb{F}_{q}^{n}

For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{F}_q^n$, the following conditions hold:

• NON-NEGATIVITY: $d_H(\mathbf{x}, \mathbf{y}) \ge 0$.

Moreover, $d_H(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$.

→ With this distance \mathbb{F}_q^n becomes a metric space.

The Hamming distance is a metric on \mathbb{F}_{q}^{n}

For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{F}_q^n$, the following conditions hold:

• NON-NEGATIVITY: $d_H(\mathbf{x}, \mathbf{y}) \ge 0$.

Moreover, $d_H(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$.

• SYMMETRY:
$$d_H(\mathbf{x}, \mathbf{y}) = d_H(\mathbf{y}, \mathbf{x})$$
.

→ With this distance \mathbb{F}_q^n becomes a metric space.

The Hamming distance is a metric on \mathbb{F}_{q}^{n}

For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{F}_q^n$, the following conditions hold:

• NON-NEGATIVITY: $d_H(\mathbf{x}, \mathbf{y}) \ge 0$.

Moreover, $d_H(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$.

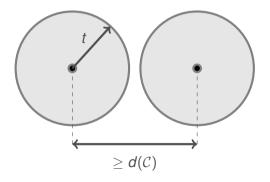
• SYMMETRY:
$$d_H(\mathbf{x}, \mathbf{y}) = d_H(\mathbf{y}, \mathbf{x})$$
.

- TRIANGLE INEQUALITY: $d_H(\mathbf{x}, \mathbf{y}) \le d_H(\mathbf{x}, \mathbf{z}) + d_H(\mathbf{z}, \mathbf{y})$
- → With this distance \mathbb{F}_q^n becomes a metric space.

Minimum distance

Minimum distance

The minimum distance of C is $d(C) = \min \{ d_H(\mathbf{c}_1, \mathbf{c}_2) \mid \mathbf{c}_1, \mathbf{c}_2 \in C \text{ and } \mathbf{c}_1 \neq \mathbf{c}_2 \}$



Minimum distance = Minimum weight

Proposition 1

Let C be a linear code.

$$w(\mathcal{C}) = d(\mathcal{C})$$

Minimum distance = Minimum weight

Proposition 1

Let C be a linear code.

$$w(\mathcal{C}) = \textit{\textit{d}}(\mathcal{C})$$

Proof:

Since C is a linear code we have that:

$$\boldsymbol{0} \in \mathcal{C} \quad \text{ and } \quad \boldsymbol{c}_1 - \boldsymbol{c}_2 \in \mathcal{C}, \, \forall \boldsymbol{c}_1, \boldsymbol{c}_2 \in \mathcal{C}$$

Minimum distance = Minimum weight

Proposition 1

Let C be a linear code.

$$w(\mathcal{C}) = \textit{\textit{d}}(\mathcal{C})$$

Proof:

Since C is a linear code we have that:

$$\boldsymbol{0} \in \mathcal{C} \quad \text{ and } \quad \boldsymbol{c_1} - \boldsymbol{c_2} \in \mathcal{C}, \, \forall \boldsymbol{c_1}, \boldsymbol{c_2} \in \mathcal{C}$$

Then, the results follows from the fact that:

$$w_H(\mathbf{c}) = d_H(\mathbf{0}, \mathbf{c})$$
 and $d_H(\mathbf{c}_1, \mathbf{c}_2) = w_H(\mathbf{c}_1 - \mathbf{c}_2)$

Proposition 2:

Let C be an $[n, k]_q$ code with parity check matrix H:

$$d(\mathcal{C}) = d \iff$$
 Every set of $(d - 1)$ columns of H are linearly independent

Proof:

Let $H \in \mathbb{F}_q^{(n-k) \times n}$ be a parity check matrix for C. It is easy to check that:

 $\exists \mathbf{c} \in \mathcal{C}, \mathbf{c} \neq \mathbf{0} : w_H(\mathbf{c}) = w \iff \exists w \text{ columns of } H \text{ Linearly dependent}$

Moreover, since $d(\mathcal{C}) = w(\mathcal{C})$, then the weight *d* is achieved by some codeword. That is,

$$\exists \mathbf{c} \in \mathcal{C} \; : \; \mathrm{w}_{H}(\mathbf{c}) = d$$

Or equivalently, *d* is the minimal number of columns required for linear dependence.

Consequence of Proposition 2:

Consequence of Proposition 2:

1. $d(\mathcal{C}) = 1 \iff H$ has a zero column

Consequence of Proposition 2:

- 1. $d(\mathcal{C}) = 1 \iff H$ has a zero column
- **2.** $d(\mathcal{C}) = 2 \iff H$ has two columns h_i, h_j that are dependent

Consequence of Proposition 2:

- **1**. $d(\mathcal{C}) = 1 \iff H$ has a zero column
- **2.** $d(\mathcal{C}) = 2 \iff H$ has two columns h_i, h_i that are dependent
- 3. In the binary case:

Consequence of Proposition 2:

- **1**. $d(\mathcal{C}) = 1 \iff H$ has a zero column
- **2.** $d(\mathcal{C}) = 2 \iff H$ has two columns h_i, h_i that are dependent
- 3. In the binary case:

 $d(\mathcal{C}) = 2 \iff H$ has two columns $h_i, h_j : h_i = h_j$

Consequence of Proposition 2:

- **1**. $d(\mathcal{C}) = 1 \iff H$ has a zero column
- **2.** $d(\mathcal{C}) = 2 \iff H$ has two columns h_i, h_j that are dependent
- 3. In the binary case:

 $d(\mathcal{C}) = 2 \iff H$ has two columns $h_i, h_j : h_i = h_j$

$$d(\mathcal{C}) = 3 \iff \begin{cases} H \text{ has no zero columns} \\ \text{All columns are mutually distinct} \end{cases}$$

Proposition 3: Singleton bound

Let C be an $[n, k]_q$ code. Then $d(C) \le n - k + 1$

This bound is the **SINGLETON BOUND**

Proposition 3: Singleton bound

Let C be an $[n, k]_q$ code. Then $d(C) \le n - k + 1$

This bound is the **SINGLETON BOUND**

Proof:

Proposition 3: Singleton bound

Let C be an $[n, k]_q$ code. Then $d(C) \le n - k + 1$

This bound is the **SINGLETON BOUND**

Proof:

→ The **rank** of a parity check matrix *H* for *C* is n - k.

Proposition 3: Singleton bound

Let C be an $[n, k]_q$ code. Then $d(C) \le n - k + 1$

This bound is the **SINGLETON BOUND**

Proof:

- → The **rank** of a parity check matrix *H* for *C* is n k.
- → At most n k + 1 columns of H are **linearly dependent**

Proposition 3: Singleton bound

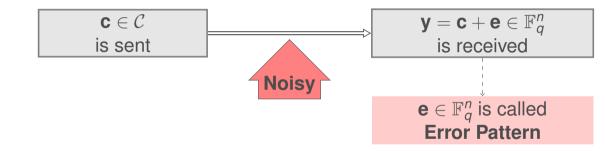
Let C be an $[n, k]_q$ code. Then $d(C) \le n - k + 1$

This bound is the **SINGLETON BOUND**

Proof:

- → The **rank** of a parity check matrix *H* for *C* is n k.
- → At most n k + 1 columns of H are **linearly dependent**
- → By Proposition 2: $d(C) \le n k + 1$

Error-detecting & Error-correcting capability



Code	Length	Up	Down	Left	Right

Note that:

Code	Length	Up	Down	Left	Right
\mathcal{C}_1	2	00	10	01	11

Note that:

• C_1 can not detect errors.

Code	Length	Up	Down	Left	Right
\mathcal{C}_1	2	00	10	01	11
\mathcal{C}_2	3	000	110	011	101

Note that:

- C_1 can not detect errors.
- C_2 can detect but not correct 1 error.

Code	Length	Up	Down	Left	Right
\mathcal{C}_1	2	00	10	01	11
C_2	3	000	110	011	101
\mathcal{C}_3	6	000000	111000	001110	110011

Note that:

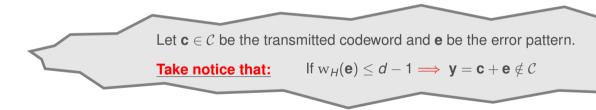
- C_1 can not detect errors.
- C_2 can detect but not correct 1 error.
- C_3 can detect and correct up to 1 error.

Error-detection capability

Detectable errors

Let C be an $[n, k]_q$ code of minimum distance d:

Any error pattern of size at most d - 1 can be **detected**.



Error-detection capability

Let $\mathbf{c} \in \mathcal{C}$ be the transmitted codeword and \mathbf{e} be the error pattern:

- → Some error patterns $\mathbf{e} \in \mathbb{F}_q^n$: $w_H(\mathbf{e}) \ge d$ can be detected
- → Error detection fails when $\mathbf{e} \in C$ and $\mathbf{e} \neq \mathbf{0}$.

Error-detection capability

Let $\mathbf{c} \in \mathcal{C}$ be the transmitted codeword and \mathbf{e} be the error pattern:

- → Some error patterns $\mathbf{e} \in \mathbb{F}_q^n$: $w_H(\mathbf{e}) \ge d$ can be detected
- → Error detection fails when $\mathbf{e} \in C$ and $\mathbf{e} \neq \mathbf{0}$.

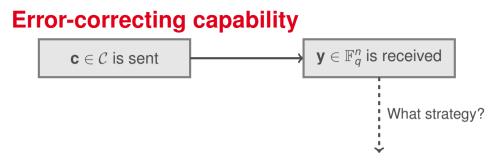
Number of detectable errors:

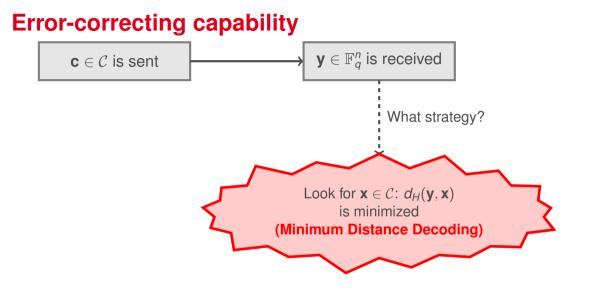
Let C be an $[n, k]_q$ code.

There are $q^n - q^k$ error patterns that can be **detected**.

Error-correcting capability

$$\mathbf{c} \in \mathcal{C} \text{ is sent}$$
 $\mathbf{y} \in \mathbb{F}_q^n \text{ is received}$





Error-correcting capability

Theorem:

Let C be a linear code with minimum distance d:

$$C$$
 can correct *t* errors $\iff t < \frac{d}{2}$, i.e. $t \le \lfloor \frac{d-1}{2} \rfloor$

Proof:

Let **y** be the received word and suppose that *t* errors have occurred.

If C cannot correct this error pattern then there are two codewords at distance t from the received codeword.

$$\begin{array}{l} \exists \boldsymbol{c}_1, \boldsymbol{c}_2 \in \mathcal{C} \\ \exists \boldsymbol{e}_1, \boldsymbol{e}_2 \in \mathbb{F}_q \text{ with } w_H(\boldsymbol{e}_1), w_H(\boldsymbol{e}_2) < t \end{array} \right\} \text{ such that } \boldsymbol{y} = \boldsymbol{c}_1 + \boldsymbol{e}_1 = \boldsymbol{c}_2 + \boldsymbol{e}_2 \end{array}$$

Thus we have a nonzero codeword of weight smaller than d, i.e.

$$w_H(\mathbf{c}_1 - \mathbf{c}_2) = w_H(\mathbf{e}_1 - \mathbf{e}_2) < 2t < d$$

which contradicts the minimality of d.

The rest is left as an exercise.

Error-detecting & Error-correcting capability

Minimum distance d(C) determines capabilities of the code C

- Number of detectable errors: $\hat{t} = d(C) 1$
- Number of correctable errors:

$$t = \left\lfloor \frac{d(\mathcal{C}) - 1}{2} \right\rfloor$$

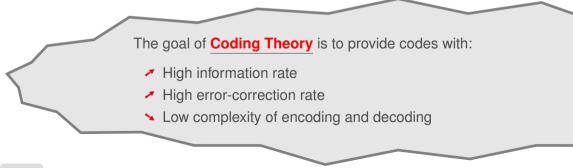
The quality of an $[n, k]_q$ code is indicated by:

→ The Information Rate: $\frac{k}{n}$

- → The Information Rate: $\frac{k}{n}$
- → The relative minimum distance $\frac{d}{n}$

- → The Information Rate: $\frac{k}{n}$
- → The relative minimum distance $\frac{d}{n}$
- → The complexity of the **encoding** and **decoding** procedures

- → The Information Rate: $\frac{k}{n}$
- → The relative minimum distance $\frac{d}{n}$
- → The complexity of the **encoding** and **decoding** procedures



1. Error-Correcting Codes and Cryptography

- 1. Introduction I Cryptography
- 2. Introduction II Coding Theory
- 3. Encoding (Linear Transformation)
- 4. Parity Checking
- 5. Error Correcting Capacity
- 6. Decoding (A Difficult Problem)
- 7. Reed-Solomon Codes
- 8. Goppa Codes
- 9. McEliece Cryptosystem